Switch to: References

Add citations

You must login to add citations.
  1. Indefinite Divisibility.Jeffrey Sanford Russell - 2016 - Inquiry: An Interdisciplinary Journal of Philosophy 59 (3):239-263.
    Some hold that the lesson of Russell’s paradox and its relatives is that mathematical reality does not form a ‘definite totality’ but rather is ‘indefinitely extensible’. There can always be more sets than there ever are. I argue that certain contact puzzles are analogous to Russell’s paradox this way: they similarly motivate a vision of physical reality as iteratively generated. In this picture, the divisions of the continuum into smaller parts are ‘potential’ rather than ‘actual’. Besides the intrinsic interest of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Structure of Gunk: Adventures in the Ontology of Space.Jeffrey Sanford Russell - 2008 - In Dean Zimmerman (ed.), Oxford Studies in Metaphysics: Volume 4. Oxford University Press UK. pp. 248.
    Could space consist entirely of extended regions, without any regions shaped like points, lines, or surfaces? Peter Forrest and Frank Arntzenius have independently raised a paradox of size for space like this, drawing on a construction of Cantor’s. I present a new version of this argument and explore possible lines of response.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mereotopology without Mereology.Peter Forrest - 2010 - Journal of Philosophical Logic 39 (3):229-254.
    Mereotopology is that branch of the theory of regions concerned with topological properties such as connectedness. It is usually developed by considering the parthood relation that characterizes the, perhaps non-classical, mereology of Space (or Spacetime, or a substance filling Space or Spacetime) and then considering an extra primitive relation. My preferred choice of mereotopological primitive is interior parthood . This choice will have the advantage that filters may be defined with respect to it, constructing “points”, as Peter Roeper has done (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Smooth Infinitesimals in the Metaphysical Foundation of Spacetime Theories.Lu Chen - 2022 - Journal of Philosophical Logic 51 (4):857-877.
    I propose a theory of space with infinitesimal regions called smooth infinitesimal geometry based on certain algebraic objects, which regiments a mode of reasoning heuristically used by geometricists and physicists. I argue that SIG has the following utilities. It provides a simple metaphysics of vector fields and tangent space that are otherwise perplexing. A tangent space can be considered an infinitesimal region of space. It generalizes a standard implementation of spacetime algebraicism called Einstein algebras. It solves the long-standing problem of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations