Switch to: References

Add citations

You must login to add citations.
  1. The Tractable Cognition Thesis.Iris Van Rooij - 2008 - Cognitive Science 32 (6):939-984.
    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance theTractable Cognition thesis: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational‐level theories of cognition. To utilize this constraint, a precise and workable definition of “computational tractability” is needed. Following computer science tradition, many cognitive scientists and psychologists define computational tractability as polynomial‐time computability, leading to theP‐Cognition thesis. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • On the Physical Explanation for Quantum Computational Speedup.Michael Cuffaro - 2013 - Dissertation, The University of Western Ontario
    The aim of this dissertation is to clarify the debate over the explanation of quantum speedup and to submit, for the reader's consideration, a tentative resolution to it. In particular, I argue, in this dissertation, that the physical explanation for quantum speedup is precisely the fact that the phenomenon of quantum entanglement enables a quantum computer to fully exploit the representational capacity of Hilbert space. This is impossible for classical systems, joint states of which must always be representable as product (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Many worlds, the cluster-state quantum computer, and the problem of the preferred basis.Michael E. Cuffaro - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):35-42.
    I argue that the many worlds explanation of quantum computation is not licensed by, and in fact is conceptually inferior to, the many worlds interpretation of quantum mechanics from which it is derived. I argue that the many worlds explanation of quantum computation is incompatible with the recently developed cluster state model of quantum computation. Based on these considerations I conclude that we should reject the many worlds explanation of quantum computation.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Universality, Invariance, and the Foundations of Computational Complexity in the light of the Quantum Computer.Michael Cuffaro - 2018 - In Hansson Sven Ove (ed.), Technology and Mathematics: Philosophical and Historical Investigations. Cham, Switzerland: Springer Verlag. pp. 253-282.
    Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding our practical limits. In this chapter I argue that the science of \emph{quantum computing} illuminates complexity theory by emphasising that its fundamental concepts are not model-independent, but that this does not, as some suggest, force us to radically revise the foundations of the theory. For model-independence (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum hypercomputation—hype or computation?Amit Hagar & Alex Korolev - 2007 - Philosophy of Science 74 (3):347-363.
    A recent attempt to compute a (recursion‐theoretic) noncomputable function using the quantum adiabatic algorithm is criticized and found wanting. Quantum algorithms may outperform classical algorithms in some cases, but so far they retain the classical (recursion‐theoretic) notion of computability. A speculation is then offered as to where the putative power of quantum computers may come from.
    Download  
     
    Export citation  
     
    Bookmark   10 citations