Switch to: References

Add citations

You must login to add citations.
  1. La época del punto: el legado matemático de Newton en el siglo XVIII.Niccolò Guicciardini - 2007 - Estudios de Filosofía (Universidad de Antioquia) 35:67-110.
    Según la concepción heredada, los matemáticos británicos del siglo XVIII fueron responsables de una decadencia de las matemáticas en el país de Newton; una decadencia atribuida al chovinismo y a una preferencia por el pensamiento geométrico. Este artículo debate este punto de vista describiendo, primero, la complejidad de la herencia matemática de Newton y su recepción durante las primeras décadas del siglo XVIII. Una sección dedicada al monumental Treatise of Fluxions (1742) de Maclaurin describe el intento de lograr una síntesis (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hamilton, Hamiltonian Mechanics, and Causation.Christopher Gregory Weaver - 2023 - Foundations of Science:1-45.
    I show how Sir William Rowan Hamilton’s philosophical commitments led him to a causal interpretation of classical mechanics. I argue that Hamilton’s metaphysics of causation was injected into his dynamics by way of a causal interpretation of force. I then detail how forces are indispensable to both Hamilton’s formulation of classical mechanics and what we now call Hamiltonian mechanics (i.e., the modern formulation). On this point, my efforts primarily consist of showing that the contemporary orthodox interpretation of potential energy is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The calculus as algebraic analysis: Some observations on mathematical analysis in the 18th century.Craig G. Fraser - 1989 - Archive for History of Exact Sciences 39 (4):317-335.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Lagrange’s theory of analytical functions and his ideal of purity of method.Marco Panza & Giovanni Ferraro - 2012 - Archive for History of Exact Sciences 66 (2):95-197.
    We reconstruct essential features of Lagrange’s theory of analytical functions by exhibiting its structure and basic assumptions, as well as its main shortcomings. We explain Lagrange’s notions of function and algebraic quantity, and we concentrate on power-series expansions, on the algorithm for derivative functions, and the remainder theorem—especially on the role this theorem has in solving geometric and mechanical problems. We thus aim to provide a better understanding of Enlightenment mathematics and to show that the foundations of mathematics did not, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Origins of Euler's Variational Calculus.Craig G. Fraser - 1994 - Archive for History of Exact Sciences 47 (2):103-141.
    Download  
     
    Export citation  
     
    Bookmark   1 citation