Switch to: References

Add citations

You must login to add citations.
  1. The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • König's Infinity Lemma and Beth's Tree Theorem.George Weaver - 2017 - History and Philosophy of Logic 38 (1):48-56.
    König, D. [1926. ‘Sur les correspondances multivoques des ensembles’, Fundamenta Mathematica, 8, 114–34] includes a result subsequently called König's Infinity Lemma. Konig, D. [1927. ‘Über eine Schlussweise aus dem Endlichen ins Unendliche’, Acta Litterarum ac Scientiarum, Szeged, 3, 121–30] includes a graph theoretic formulation: an infinite, locally finite and connected graph includes an infinite path. Contemporary applications of the infinity lemma in logic frequently refer to a consequence of the infinity lemma: an infinite, locally finite tree with a root has (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The strong tree property and the failure of SCH.Jin Du - 2019 - Archive for Mathematical Logic 58 (7-8):867-875.
    Fontanella :193–207, 2014) showed that if \ is an increasing sequence of supercompacts and \, then the strong tree property holds at \. Building on a proof by Neeman, we show that the strong tree property at \ is consistent with \, where \ is singular strong limit of countable cofinality.
    Download  
     
    Export citation  
     
    Bookmark