Switch to: References

Add citations

You must login to add citations.
  1. First- and Second-Level Bias in Automated Decision-making.Ulrik Franke - 2022 - Philosophy and Technology 35 (2):1-20.
    Recent advances in artificial intelligence offer many beneficial prospects. However, concerns have been raised about the opacity of decisions made by these systems, some of which have turned out to be biased in various ways. This article makes a contribution to a growing body of literature on how to make systems for automated decision-making more transparent, explainable, and fair by drawing attention to and further elaborating a distinction first made by Nozick between first-level bias in the application of standards and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reconstructing AI Ethics Principles: Rawlsian Ethics of Artificial Intelligence.Salla Westerstrand - 2024 - Science and Engineering Ethics 30 (5):1-21.
    The popularisation of Artificial Intelligence (AI) technologies has sparked discussion about their ethical implications. This development has forced governmental organisations, NGOs, and private companies to react and draft ethics guidelines for future development of ethical AI systems. Whereas many ethics guidelines address values familiar to ethicists, they seem to lack in ethical justifications. Furthermore, most tend to neglect the impact of AI on democracy, governance, and public deliberation. Existing research suggest, however, that AI can threaten key elements of western democracies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rawlsian Algorithmic Fairness and a Missing Aggregation Property of the Difference Principle.Ulrik Franke - 2024 - Philosophy and Technology 37 (3):1-19.
    Modern society makes extensive use of automated algorithmic decisions, fueled by advances in artificial intelligence. However, since these systems are not perfect, questions about fairness are increasingly investigated in the literature. In particular, many authors take a Rawlsian approach to algorithmic fairness. Based on complications with this approach identified in the literature, this article discusses how Rawls’s theory in general, and especially the difference principle, should reasonably be applied to algorithmic fairness decisions. It is observed that proposals to achieve Rawlsian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Promises and Pitfalls of Algorithm Use by State Authorities.Maryam Amir Haeri, Kathrin Hartmann, Jürgen Sirsch, Georg Wenzelburger & Katharina A. Zweig - 2022 - Philosophy and Technology 35 (2):1-31.
    Algorithmic systems are increasingly used by state agencies to inform decisions about humans. They produce scores on risks of recidivism in criminal justice, indicate the probability for a job seeker to find a job in the labor market, or calculate whether an applicant should get access to a certain university program. In this contribution, we take an interdisciplinary perspective, provide a bird’s eye view of the different key decisions that are to be taken when state actors decide to use an (...)
    Download  
     
    Export citation  
     
    Bookmark