Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)On extendability to $$F_\sigma $$ ideals.Adam Kwela - 2022 - Archive for Mathematical Logic 61 (7):881-890.
    Answering in negative a question of M. Hrušák, we construct a Borel ideal not extendable to any \(F_\sigma \) ideal and such that it is not Katětov above the ideal \(\mathrm {conv}\).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On extendability to Fσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\sigma $$\end{document} ideals. [REVIEW]Adam Kwela - 2022 - Archive for Mathematical Logic 61 (7-8):881-890.
    Answering in negative a question of M. Hrušák, we construct a Borel ideal not extendable to any Fσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\sigma $$\end{document} ideal and such that it is not Katětov above the ideal conv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {conv}$$\end{document}.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Eggleston's dichotomy for characterized subgroups and the role of ideals.Pratulananda Das & Ayan Ghosh - 2023 - Annals of Pure and Applied Logic 174 (8):103289.
    Download  
     
    Export citation  
     
    Bookmark