Switch to: References

Add citations

You must login to add citations.
  1. A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.
    We show that if \ is \\)-hypermeasurable for some cardinal \ with \ \le \mu \) and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model \ in which the \\)-hypermeasurability of \ is indestructible by the Cohen forcing at \ of any length up to \ is \\)-hypermeasurable in \). The preservation of hypermeasurability is useful for subsequent arguments. The construction of \ is based on the ideas of Woodin and Cummings :1–39, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The tree property and the continuum function below.Radek Honzik & Šárka Stejskalová - 2018 - Mathematical Logic Quarterly 64 (1-2):89-102.
    We say that a regular cardinal κ,, has the tree property if there are no κ‐Aronszajn trees; we say that κ has the weak tree property if there are no special κ‐Aronszajn trees. Starting with infinitely many weakly compact cardinals, we show that the tree property at every even cardinal,, is consistent with an arbitrary continuum function below which satisfies,. Next, starting with infinitely many Mahlo cardinals, we show that the weak tree property at every cardinal,, is consistent with an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Easton's theorem for the tree property below ℵ.Šárka Stejskalová - 2021 - Annals of Pure and Applied Logic 172 (7):102974.
    Download  
     
    Export citation  
     
    Bookmark