Switch to: References

Add citations

You must login to add citations.
  1. The consistency strength of long projective determinacy.Juan P. Aguilera & Sandra Müller - 2019 - Journal of Symbolic Logic 85 (1):338-366.
    We determine the consistency strength of determinacy for projective games of length ω^2. Our main theorem is that $\Pi _{n + 1}^1$-determinacy for games of length ω^2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that M_n(A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $A = R$ and the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mice with finitely many Woodin cardinals from optimal determinacy hypotheses.Sandra Müller, Ralf Schindler & W. Hugh Woodin - 2020 - Journal of Mathematical Logic 20 (Supp01):1950013.
    We prove the following result which is due to the third author. Let [Formula: see text]. If [Formula: see text] determinacy and [Formula: see text] determinacy both hold true and there is no [Formula: see text]-definable [Formula: see text]-sequence of pairwise distinct reals, then [Formula: see text] exists and is [Formula: see text]-iterable. The proof yields that [Formula: see text] determinacy implies that [Formula: see text] exists and is [Formula: see text]-iterable for all reals [Formula: see text]. A consequence is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Preserving levels of projective determinacy by tree forcings.Fabiana Castiblanco & Philipp Schlicht - 2021 - Annals of Pure and Applied Logic 172 (4):102918.
    We prove that various classical tree forcings—for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing—preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes are added to thin projective transitive relations by these forcings.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Thin equivalence relations and inner models.Philipp Schlicht - 2014 - Annals of Pure and Applied Logic 165 (10):1577-1625.
    We describe the inner models with representatives in all equivalence classes of thin equivalence relations in a given projective pointclass of even level assuming projective determinacy. The main result shows that these models are characterized by their correctness and the property that they correctly compute the tree from the appropriate scale. The main step towards this characterization shows that the tree from a scale can be reconstructed in a generic extension of an iterate of a mouse. We then construct models (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Stacking mice.Ronald Jensen, Ernest Schimmerling, Ralf Schindler & John Steel - 2009 - Journal of Symbolic Logic 74 (1):315-335.
    We show that either of the following hypotheses imply that there is an inner model with a proper class of strong cardinals and a proper class of Woodin cardinals. 1) There is a countably closed cardinal k ≥ N₃ such that □k and □(k) fail. 2) There is a cardinal k such that k is weakly compact in the generic extension by Col(k, k⁺). Of special interest is 1) with k = N₃ since it follows from PFA by theorems of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The solidity and nonsolidity of initial segments of the core model.Gunter Fuchs & Ralf Schindler - 2018 - Journal of Symbolic Logic 83 (3):920-938.
    Download  
     
    Export citation  
     
    Bookmark  
  • Woodin's axiom , bounded forcing axioms, and precipitous ideals on ω 1.Benjamin Claverie & Ralf Schindler - 2012 - Journal of Symbolic Logic 77 (2):475-498.
    If the Bounded Proper Forcing Axiom BPFA holds, then Mouse Reflection holds at N₂ with respect to all mouse operators up to the level of Woodin cardinals in the next ZFC-model. This yields that if Woodin's ℙ max axiom (*) holds, then BPFA implies that V is closed under the "Woodin-in-the-next-ZFC-model" operator. We also discuss stronger Mouse Reflection principles which we show to follow from strengthenings of BPFA, and we discuss the theory BPFA plus "NS ω1 is precipitous" and strengthenings (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations