Switch to: References

Add citations

You must login to add citations.
  1. Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Iteratively Changing the Heights of Automorphism Towers.Gunter Fuchs & Philipp Lücke - 2012 - Notre Dame Journal of Formal Logic 53 (2):155-174.
    We extend the results of Hamkins and Thomas concerning the malleability of automorphism tower heights of groups by forcing. We show that any reasonable sequence of ordinals can be realized as the automorphism tower heights of a certain group in consecutive forcing extensions or ground models, as desired. For example, it is possible to increase the height of the automorphism tower by passing to a forcing extension, then increase it further by passing to a ground model, and then decrease it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic embeddings associated to an indestructibly weakly compact cardinal.Gunter Fuchs - 2010 - Annals of Pure and Applied Logic 162 (1):89-105.
    I use generic embeddings induced by generic normal measures on that can be forced to exist if κ is an indestructibly weakly compact cardinal. These embeddings can be applied in order to obtain the forcing axioms in forcing extensions. This has consequences in : The Singular Cardinal Hypothesis holds above κ, and κ has a useful Jónsson-like property. This in turn implies that the countable tower works much like it does when κ is a Woodin limit of Woodin cardinals. One (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generalizations of the Kunen inconsistency.Joel David Hamkins, Greg Kirmayer & Norman Lewis Perlmutter - 2012 - Annals of Pure and Applied Logic 163 (12):1872-1890.
    We present several generalizations of the well-known Kunen inconsistency that there is no nontrivial elementary embedding from the set-theoretic universe V to itself. For example, there is no elementary embedding from the universe V to a set-forcing extension V[G], or conversely from V[G] to V, or more generally from one set-forcing ground model of the universe to another, or between any two models that are eventually stationary correct, or from V to HOD, or conversely from HOD to V, or indeed (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Closed Maximality Principles and Generalized Baire Spaces.Philipp Lücke - 2019 - Notre Dame Journal of Formal Logic 60 (2):253-282.
    Given an uncountable regular cardinal κ, we study the structural properties of the class of all sets of functions from κ to κ that are definable over the structure 〈H,∈〉 by a Σ1-formula with parameters. It is well known that many important statements about these classes are not decided by the axioms of ZFC together with large cardinal axioms. In this paper, we present other canonical extensions of ZFC that provide a strong structure theory for these classes. These axioms are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Subcomplete forcing principles and definable well‐orders.Gunter Fuchs - 2018 - Mathematical Logic Quarterly 64 (6):487-504.
    It is shown that the boldface maximality principle for subcomplete forcing,, together with the assumption that the universe has only set many grounds, implies the existence of a well‐ordering of definable without parameters. The same conclusion follows from, assuming there is no inner model with an inaccessible limit of measurable cardinals. Similarly, the bounded subcomplete forcing axiom, together with the assumption that does not exist, for some, implies the existence of a well‐ordering of which is Δ1‐definable without parameters, and ‐definable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation