Switch to: References

Add citations

You must login to add citations.
  1. The subcompleteness of diagonal Prikry forcing.Kaethe Minden - 2020 - Archive for Mathematical Logic 59 (1-2):81-102.
    Let \ be an infinite discrete set of measurable cardinals. It is shown that generalized Prikry forcing to add a countable sequence to each cardinal in \ is subcomplete. To do this it is shown that a simplified version of generalized Prikry forcing which adds a point below each cardinal in \, called generalized diagonal Prikry forcing, is subcomplete. Moreover, the generalized diagonal Prikry forcing associated to \ is subcomplete above \, where \ is any regular cardinal below the first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hierarchies of resurrection axioms.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):283-325.
    I analyze the hierarchies of the bounded resurrection axioms and their “virtual” versions, the virtual bounded resurrection axioms, for several classes of forcings. I analyze these axioms in terms of implications and consistency strengths. For the virtual hierarchies, I provide level-by-level equiconsistencies with an appropriate hierarchy of virtual partially super-extendible cardinals. I show that the boldface resurrection axioms for subcomplete or countably closed forcing imply the failure of Todorčević’s square at the appropriate level. I also establish connections between these hierarchies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hierarchies of forcing axioms, the continuum hypothesis and square principles.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):256-282.
    I analyze the hierarchies of the bounded and the weak bounded forcing axioms, with a focus on their versions for the class of subcomplete forcings, in terms of implications and consistency strengths. For the weak hierarchy, I provide level-by-level equiconsistencies with an appropriate hierarchy of partially remarkable cardinals. I also show that the subcomplete forcing axiom implies Larson’s ordinal reflection principle atω2, and that its effect on the failure of weak squares is very similar to that of Martin’s Maximum.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Subcomplete forcing principles and definable well‐orders.Gunter Fuchs - 2018 - Mathematical Logic Quarterly 64 (6):487-504.
    It is shown that the boldface maximality principle for subcomplete forcing,, together with the assumption that the universe has only set many grounds, implies the existence of a well‐ordering of definable without parameters. The same conclusion follows from, assuming there is no inner model with an inaccessible limit of measurable cardinals. Similarly, the bounded subcomplete forcing axiom, together with the assumption that does not exist, for some, implies the existence of a well‐ordering of which is Δ1‐definable without parameters, and ‐definable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Closure properties of parametric subcompleteness.Gunter Fuchs - 2018 - Archive for Mathematical Logic 57 (7-8):829-852.
    For an ordinal \, I introduce a variant of the notion of subcompleteness of a forcing poset, which I call \-subcompleteness, and show that this class of forcings enjoys some closure properties that the original class of subcomplete forcings does not seem to have: factors of \-subcomplete forcings are \-subcomplete, and if \ and \ are forcing-equivalent notions, then \ is \-subcomplete iff \ is. I formulate a Two Step Theorem for \-subcompleteness and prove an RCS iteration theorem for \-subcompleteness (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations