Switch to: References

Add citations

You must login to add citations.
  1. Mathematical fuzzy logics.Siegfried Gottwald - 2008 - Bulletin of Symbolic Logic 14 (2):210-239.
    The last decade has seen an enormous development in infinite-valued systems and in particular in such systems which have become known as mathematical fuzzy logics. The paper discusses the mathematical background for the interest in such systems of mathematical fuzzy logics, as well as the most important ones of them. It concentrates on the propositional cases, and mentions the first-order systems more superficially. The main ideas, however, become clear already in this restricted setting.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • These Degrees go to Eleven: Fuzzy Logics and Gradable Predicates.Petr Cintula, Berta Grimau, Carles Noguera & Nicholas J. J. Smith - 2022 - Synthese 200 (445):1-38.
    In the literature on vagueness one finds two very different kinds of degree theory. The dominant kind of account of gradable adjectives in formal semantics and linguistics is built on an underlying framework involving bivalence and classical logic: its degrees are not degrees of truth. On the other hand, fuzzy logic based theories of vagueness—largely absent from the formal semantics literature but playing a significant role in both the philosophical literature on vagueness and in the contemporary logic literature—are logically nonclassical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Amalgamation through quantifier elimination for varieties of commutative residuated lattices.Enrico Marchioni - 2012 - Archive for Mathematical Logic 51 (1-2):15-34.
    This work presents a model-theoretic approach to the study of the amalgamation property for varieties of semilinear commutative residuated lattices. It is well-known that if a first-order theory T enjoys quantifier elimination in some language L, the class of models of the set of its universal consequences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm T_\forall}$$\end{document} has the amalgamation property. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Th}(\mathbb{K})}$$\end{document} be the theory of an elementary subclass (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generalized ordinal sums and translations.Nikolaos Galatos - 2011 - Logic Journal of the IGPL 19 (3):455-466.
    We extend the lattice embedding of the axiomatic extensions of the positive fragment of intuitionistic logic into the axiomatic extensions of intuitionistic logic to the setting of substructural logics. Our approach is algebraic and uses residuated lattices, the algebraic models for substructural logics. We generalize the notion of the ordinal sum of two residuated lattices and use it to obtain embeddings between subvariety lattices of certain residuated lattice varieties. As a special case we obtain the above mentioned embedding of the (...)
    Download  
     
    Export citation  
     
    Bookmark