Switch to: References

Add citations

You must login to add citations.
  1. The automorphism group and definability of the jump operator in the $$\omega $$ ω -enumeration degrees.Hristo Ganchev & Andrey C. Sariev - 2021 - Archive for Mathematical Logic 60 (7):909-925.
    In the present paper, we show the first-order definability of the jump operator in the upper semi-lattice of the \-enumeration degrees. As a consequence, we derive the isomorphicity of the automorphism groups of the enumeration and the \-enumeration degrees.
    Download  
     
    Export citation  
     
    Bookmark  
  • The ω-Turing degrees.Andrey C. Sariev & Hristo Ganchev - 2014 - Annals of Pure and Applied Logic 165 (9):1512-1532.
    In this paper we initiate the study of the ω-Turing reducibility between sequences of sets of natural numbers. We shall prove that the induced degree structure is an extension of the structure of the Turing degrees and that the two structures are closely connected, but different enough. Further we shall prove some definability results for the local theory of the newly defined structure.
    Download  
     
    Export citation  
     
    Bookmark  
  • Cupping and definability in the local structure of the enumeration degrees.Hristo Ganchev & Mariya I. Soskova - 2012 - Journal of Symbolic Logic 77 (1):133-158.
    We show that every splitting of ${0}_{\mathrm{e}}^{\prime }$ in the local structure of the enumeration degrees, $$\mathcal{G}_{e} , contains at least one low-cuppable member. We apply this new structural property to show that the classes of all $\mathcal{K}$ -pairs in $\mathcal{G}_{e}$ , all downwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees and all upwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees are first order definable in $\mathcal{G}_{e}$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations