Switch to: References

Add citations

You must login to add citations.
  1. An argument for ψ-ontology in terms of protective measurements.Shan Gao - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):198-202.
    The ontological model framework provides a rigorous approach to address the question of whether the quantum state is ontic or epistemic. When considering only conventional projective measurements, auxiliary assumptions are always needed to prove the reality of the quantum state in the framework. For example, the Pusey-Barrett-Rudolph theorem is based on an additional preparation independence assumption. In this paper, we give a new proof of psi-ontology in terms of protective measurements in the ontological model framework. The proof does not rely (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Protective Measurements and the Reality of the Wave Function.Shan Gao - 2022 - British Journal for the Philosophy of Science 73 (3):777-794.
    It has been debated whether protective measurement implies the reality of the wave function. In this article, I present a new analysis of the relationship between protective measurements and the reality of the wave function. First, I briefly introduce protective measurements and the ontological models framework for them. Second, I give a simple proof of Hardy’s theorem in terms of protective measurements. Third, I analyse two suggested ψ -epistemic models of a protective measurement. It is shown that although these models (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random and discontinuous.
    Download  
     
    Export citation  
     
    Bookmark  
  • Measurement and metaphysics.Peter J. Lewis - unknown
    Protective measurement might be taken to put the last nail in the coffin of ensemble interpretations of the quantum state. My goal here is to show that even though ensemble interpretations face formidable obstacles, protective measurements don't lead to any additional difficulties. Rather, they provide us with a nice illustration of a conclusion for which we had considerable indirect evidence already, namely that quantum mechanics leads to a blurring of the distinction between the intrinsic properties of a system and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A PBR-like argument for psi-ontology in terms of protective measurements.Shan Gao - unknown
    The ontological status of the wave function in quantum mechanics has been analyzed in the context of conventional projective measurements. These analyses are usually based on some nontrivial assumptions, e.g. a preparation independence assumption is needed to prove the PBR theorem. In this paper, we give a PBR-like argument for psi-ontology in terms of protective measurements, by which one can directly measure the expectation values of observables on a single quantum system. The proof does not resort to nontrivial assumptions such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the reality and meaning of the wave function.Shan Gao - unknown
    In this article, we give a clearer argument for the reality of the wave function in terms of protective measurements, which does not depend on nontrivial assumptions and also overcomes existing objections. Moreover, based on an analysis of the mass and charge properties of a quantum system, we propose a new ontological interpretation of the wave function. According to this interpretation, the wave function of an N-body system represents the state of motion of N particles. Moreover, the motion of particles (...)
    Download  
     
    Export citation  
     
    Bookmark