Switch to: References

Add citations

You must login to add citations.
  1. A note on the finitization of Abelian and Tauberian theorems.Thomas Powell - 2020 - Mathematical Logic Quarterly 66 (3):300-310.
    We present finitary formulations of two well known results concerning infinite series, namely Abel's theorem, which establishes that if a series converges to some limit then its Abel sum converges to the same limit, and Tauber's theorem, which presents a simple condition under which the converse holds. Our approach is inspired by proof theory, and in particular Gödel's functional interpretation, which we use to establish quantitative versions of both of these results.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A finitization of Littlewood's Tauberian theorem and an application in Tauberian remainder theory.Thomas Powell - 2023 - Annals of Pure and Applied Logic 174 (4):103231.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the computational content of the Bolzano-Weierstraß Principle.Pavol Safarik & Ulrich Kohlenbach - 2010 - Mathematical Logic Quarterly 56 (5):508-532.
    We will apply the methods developed in the field of ‘proof mining’ to the Bolzano-Weierstraß theorem BW and calibrate the computational contribution of using this theorem in proofs of combinatorial statements. We provide an explicit solution of the Gödel functional interpretation as well as the monotone functional interpretation of BW for the product space Πi ∈ℕ[–ki, ki] . This results in optimal program and bound extraction theorems for proofs based on fixed instances of BW, i.e. for BW applied to fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations