Switch to: References

Add citations

You must login to add citations.
  1. The weakly compact reflection principle need not imply a high order of weak compactness.Brent Cody & Hiroshi Sakai - 2020 - Archive for Mathematical Logic 59 (1-2):179-196.
    The weakly compact reflection principle\\) states that \ is a weakly compact cardinal and every weakly compact subset of \ has a weakly compact proper initial segment. The weakly compact reflection principle at \ implies that \ is an \-weakly compact cardinal. In this article we show that the weakly compact reflection principle does not imply that \ is \\)-weakly compact. Moreover, we show that if the weakly compact reflection principle holds at \ then there is a forcing extension preserving (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The consistency strength of hyperstationarity.Joan Bagaria, Menachem Magidor & Salvador Mancilla - 2019 - Journal of Mathematical Logic 20 (1):2050004.
    We introduce the large-cardinal notions of ξ-greatly-Mahlo and ξ-reflection cardinals and prove (1) in the constructible universe, L, the first ξ-reflection cardinal, for ξ a successor ordinal, is strictly between the first ξ-greatly-Mahlo and the first Π1ξ-indescribable cardinals, (2) assuming the existence of a ξ-reflection cardinal κ in L, ξ a successor ordinal, there exists a forcing notion in L that preserves cardinals and forces that κ is (ξ+1)-stationary, which implies that the consistency strength of the existence of a (ξ+1)-stationary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations