Switch to: References

Citations of:

Quantum MV algebras

Studia Logica 56 (3):393 - 417 (1996)

Add citations

You must login to add citations.
  1. Distributive PBZ$$^{*}$$-lattices.Claudia Mureşan - 2024 - Studia Logica 112 (6):1319-1341.
    Arising in the study of Quantum Logics, PBZ $$^{*}$$ -lattices are the paraorthomodular Brouwer–Zadeh lattices in which the pairs of elements with their Kleene complements satisfy the Strong De Morgan condition with respect to the Brouwer complement. They form a variety $$\mathbb {PBZL}^{*}$$ which includes that of orthomodular lattices considered with an extended signature (by endowing them with a Brouwer complement coinciding with their Kleene complement), as well as antiortholattices (whose Brouwer complements are trivial). The former turn out to have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic Properties of Paraorthomodular Posets.Ivan Chajda, Davide Fazio, Helmut Länger, Antonio Ledda & Jan Paseka - 2022 - Logic Journal of the IGPL 30 (5):840-869.
    Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A New View of Effects in a Hilbert Space.Roberto Giuntini, Antonio Ledda & Francesco Paoli - 2016 - Studia Logica 104 (6):1145-1177.
    We investigate certain Brouwer-Zadeh lattices that serve as abstract counterparts of lattices of effects in Hilbert spaces under the spectral ordering. These algebras, called PBZ*-lattices, can also be seen as generalisations of orthomodular lattices and are remarkable for the collapse of three notions of “sharpness” that are distinct in general Brouwer-Zadeh lattices. We investigate the structure theory of PBZ*-lattices and their reducts; in particular, we prove some embedding results for PBZ*-lattices and provide an initial description of the lattice of PBZ*-varieties.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Distributive PBZ $$^{*}$$ -lattices.Claudia Mureşan - forthcoming - Studia Logica:1-23.
    Arising in the study of Quantum Logics, PBZ \(^{*}\) -_lattices_ are the paraorthomodular Brouwer–Zadeh lattices in which the pairs of elements with their Kleene complements satisfy the Strong De Morgan condition with respect to the Brouwer complement. They form a variety \(\mathbb {PBZL}^{*}\) which includes that of orthomodular lattices considered with an extended signature (by endowing them with a Brouwer complement coinciding with their Kleene complement), as well as antiortholattices (whose Brouwer complements are trivial). The former turn out to have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Connections between BCK-algebras and difference posetse.Anatolij Dvurečenskij & Hee Sik Kim - 1998 - Studia Logica 60 (3):421-439.
    We discuss the interrelations between BCK-algebras and posets with difference. Applications are given to bounded commutative BCK-algebras, difference posets, MV-algebras, quantum MV-algebras and orthoalgebras.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Structure of Pseudo BL-algebras and Pseudo Hoops in Quantum Logics.A. Dvurečenskij, R. Giuntini & T. Kowalski - 2010 - Foundations of Physics 40 (9-10):1519-1542.
    The main aim of the paper is to solve a problem posed in Di Nola et al. (Multiple Val. Logic 8:715–750, 2002) whether every pseudo BL-algebra with two negations is good, i.e. whether the two negations commute. This property is intimately connected with possessing a state, which in turn is essential in quantum logical applications. We approach the solution by describing the structure of pseudo BL-algebras and pseudo hoops as important families of quantum structures. We show when a pseudo hoop (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Paraconsistent ideas in quantum logic.Maria Luisa Dalla Chiara & Roberto Giuntini - 2000 - Synthese 125 (1/2):55-68.
    Download  
     
    Export citation  
     
    Bookmark   2 citations