Switch to: References

Add citations

You must login to add citations.
  1. The Heuristic Power of Theory Classification, the Case of General Relativity.Diego Maltrana & Nicolás Sepúlveda-Quiroz - 2022 - Foundations of Physics 52 (4):1-24.
    In this article, we explore the heuristic power of the theoretical distinction between framework and interaction theories applied to the case of General Relativity. According to the distinction, theories and theoretical elements can be classified into two different groups, each with clear ontological, epistemic and functional content. Being so, to identify the group to which a theory belongs would suffice to know a priori its prospects and limitations in these areas without going into a detailed technical analysis. We make the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Two miracles of general relativity.James Read, Harvey R. Brown & Dennis Lehmkuhl - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:14-25.
    We approach the physics of \emph{minimal coupling} in general relativity, demonstrating that in certain circumstances this leads to violations of the \emph{strong equivalence principle}, which states that, in general relativity, the dynamical laws of special relativity can be recovered at a point. We then assess the consequences of this result for the \emph{dynamical perspective on relativity}, finding that potential difficulties presented by such apparent violations of the strong equivalence principle can be overcome. Next, we draw upon our discussion of the (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Mass‐energy‐momentum: Only there because of spacetime.Dennis Lehmkuhl - 2011 - British Journal for the Philosophy of Science 62 (3):453-488.
    I describe how relativistic field theory generalizes the paradigm property of material systems, the possession of mass, to the requirement that they have a mass–energy–momentum density tensor T µ associated with them. I argue that T µ does not represent an intrinsic property of matter. For it will become evident that the definition of T µ depends on the metric field g µ in a variety of ways. Accordingly, since g µ represents the geometry of spacetime itself, the properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • On the kinematics of the torsion of space-time.Friedrich W. Hehl - 1985 - Foundations of Physics 15 (4):451-471.
    On a macroscopic level we take general relativity as the appropriate theory of space-time and gravity. We will argue that, on a more microscopic level, in the Compton wavelength regime of elementary particles, there are good reasons for suspecting the presence of a torsion of space-time. A corresponding gaugetheoretical formalism related to the Poincaré group is reviewed, and the kinematical consequences of the presence of a torsion are worked out. In particular we discuss the operational meaning and the measurability of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations