Switch to: References

Add citations

You must login to add citations.
  1. A Sahlqvist theorem for substructural logic.Tomoyuki Suzuki - 2013 - Review of Symbolic Logic 6 (2):229-253.
    In this paper, we establish the first-order definability of sequents with consistent variable occurrence on bi-approximation semantics by means of the Sahlqvist–van Benthem algorithm. Then together with the canonicity results in Suzuki (2011), this allows us to establish a Sahlqvist theorem for substructural logic. Our result is not limited to substructural logic but is also easily applicable to other lattice-based logics.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Erdős graphs resolve fine's canonicity problem.Robert Goldblatt, Ian Hodkinson & Yde Venema - 2004 - Bulletin of Symbolic Logic 10 (2):186-208.
    We show that there exist 2 ℵ 0 equational classes of Boolean algebras with operators that are not generated by the complex algebras of any first-order definable class of relational structures. Using a variant of this construction, we resolve a long-standing question of Fine, by exhibiting a bimodal logic that is valid in its canonical frames, but is not sound and complete for any first-order definable class of Kripke frames (a monomodal example can then be obtained using simulation results of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The McKinsey–Lemmon logic is barely canonical.Robert Goldblatt & Ian Hodkinson - 2007 - Australasian Journal of Logic 5:1-19.
    We study a canonical modal logic introduced by Lemmon, and axiomatised by an infinite sequence of axioms generalising McKinsey’s formula. We prove that the class of all frames for this logic is not closed under elementary equivalence, and so is non-elementary. We also show that any axiomatisation of the logic involves infinitely many non-canonical formulas.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Hybrid Formulas and Elementarily Generated Modal Logics.Ian Hodkinson - 2006 - Notre Dame Journal of Formal Logic 47 (4):443-478.
    We characterize the modal logics of elementary classes of Kripke frames as precisely those modal logics that are axiomatized by modal axioms synthesized in a certain effective way from "quasi-positive" sentences of hybrid logic. These are pure positive hybrid sentences with arbitrary existential and relativized universal quantification over nominals. The proof has three steps. The first step is to use the known result that the modal logic of any elementary class of Kripke frames is also the modal logic of the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Frame-validity Games and Lower Bounds on the Complexity of Modal Axioms.Philippe Balbiani, David Fernández-Duque, Andreas Herzig & Petar Iliev - 2022 - Logic Journal of the IGPL 30 (1):155-185.
    We introduce frame-equivalence games tailored for reasoning about the size, modal depth, number of occurrences of symbols and number of different propositional variables of modal formulae defining a given frame property. Using these games, we prove lower bounds on the above measures for a number of well-known modal axioms; what is more, for some of the axioms, we show that they are optimal among the formulae defining the respective class of frames.
    Download  
     
    Export citation  
     
    Bookmark   1 citation