Switch to: References

Add citations

You must login to add citations.
  1. Cohen preservation and independence.Vera Fischer & Corey Bacal Switzer - 2023 - Annals of Pure and Applied Logic 174 (8):103291.
    Download  
     
    Export citation  
     
    Bookmark  
  • Partition Forcing and Independent Families.Jorge A. Cruz-Chapital, Vera Fischer, Osvaldo Guzmán & Jaroslav Šupina - 2023 - Journal of Symbolic Logic 88 (4):1590-1612.
    We show that Miller partition forcing preserves selective independent families and P-points, which implies the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {u}=\mathfrak {i}<\mathfrak {a}_T=\omega _2$. In addition, we show that Shelah’s poset for destroying the maximality of a given maximal ideal preserves tight mad families and so we establish the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {i}=\omega _1<\mathfrak {u}=\mathfrak {a}_T=\omega _2$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Con(u>i).Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (6):433-443.
    We prove here the consistency of u>i where: u=Min{|X|:X⫅P(ω) generates a non-principle ultrafilter}, i=Min{|A|:A is a maximal independent family of subsets of ω}In this we continue Goldstern and Shelah [G1Sh388] where Con(r>u) was proved using a similar but different forcing. We were motivated by Vaughan [V] (which consists of a survey and a list of open problems). For more information on the subject see [V] and [G1Sh388].
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A more direct proof of a result of Shelah.Winfried Just - 1991 - Annals of Pure and Applied Logic 53 (3):261-267.
    We give a simplified proof of the main lemma in “Ramsey filters and the reaping number—Con” by Goldstern and Shelah.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Free sequences in $${\mathscr {P}}\left( \omega \right) /\text {fin}$$.David Chodounský, Vera Fischer & Jan Grebík - 2019 - Archive for Mathematical Logic 58 (7-8):1035-1051.
    We investigate maximal free sequences in the Boolean algebra \ {/}\text {fin}\), as defined by Monk :593–610, 2011). We provide some information on the general structure of these objects and we are particularly interested in the minimal cardinality of a free sequence, a cardinal characteristic of the continuum denoted \. Answering a question of Monk, we demonstrate the consistency of \. In fact, this consistency is demonstrated in the model of Shelah for \ :433–443, 1992). Our paper provides a streamlined (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Free sequences in $${mathscr {P}}left /text {fin}$$ P ω / fin.David Chodounský, Vera Fischer & Jan Grebík - 2019 - Archive for Mathematical Logic 58 (7-8):1035-1051.
    We investigate maximal free sequences in the Boolean algebra \ {/}\text {fin}\), as defined by Monk :593–610, 2011). We provide some information on the general structure of these objects and we are particularly interested in the minimal cardinality of a free sequence, a cardinal characteristic of the continuum denoted \. Answering a question of Monk, we demonstrate the consistency of \. In fact, this consistency is demonstrated in the model of Shelah for \ :433–443, 1992). Our paper provides a streamlined (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reasonable Ultrafilters, Again.Andrzej Rosłanowski & Saharon Shelah - 2011 - Notre Dame Journal of Formal Logic 52 (2):113-147.
    We continue investigations of reasonable ultrafilters on uncountable cardinals defined in previous work by Shelah. We introduce stronger properties of ultrafilters and we show that those properties may be handled in λ-support iterations of reasonably bounding forcing notions. We use this to show that consistently there are reasonable ultrafilters on an inaccessible cardinal λ with generating systems of size less than $2^\lambda$ . We also show how ultrafilters generated by small systems can be killed by forcing notions which have enough (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Groupwise dense families.Heike Mildenberger - 2001 - Archive for Mathematical Logic 40 (2):93-112.
    We show that the Filter Dichotomy Principle implies that there are exactly four classes of ideals in the set of increasing functions from the natural numbers. We thus answer two open questions on consequences of ? < ?. We show that ? < ? implies that ? = ?, and that Filter Dichotomy together with ? < ? implies ? < ?. The technical means is the investigation of groupwise dense sets, ideals, filters and ultrafilters. With related techniques we prove (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cichoń’s diagram and localisation cardinals.Martin Goldstern & Lukas Daniel Klausner - 2020 - Archive for Mathematical Logic 60 (3):343-411.
    We reimplement the creature forcing construction used by Fischer et al. :1045–1103, 2017. https://doi.org/10.1007/S00153-017-0553-8. arXiv:1402.0367 [math.LO]) to separate Cichoń’s diagram into five cardinals as a countable support product. Using the fact that it is of countable support, we augment our construction by adding uncountably many additional cardinal characteristics, sometimes referred to as localisation cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalized independence.Fernando Hernández-Hernández & Carlos López-Callejas - 2024 - Annals of Pure and Applied Logic 175 (7):103440.
    Download  
     
    Export citation  
     
    Bookmark