Switch to: References

Add citations

You must login to add citations.
  1. A Model Theory of Topology.Paolo Lipparini - forthcoming - Studia Logica:1-35.
    An algebraization of the notion of topology has been proposed more than 70 years ago in a classical paper by McKinsey and Tarski, leading to an area of research still active today, with connections to algebra, geometry, logic and many applications, in particular, to modal logics. In McKinsey and Tarski’s setting the model theoretical notion of homomorphism does not correspond to the notion of continuity. We notice that the two notions correspond if instead we consider a preorder relation \( \sqsubseteq (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complete Intuitionistic Temporal Logics for Topological Dynamics.Joseph Boudou, Martín Diéguez & David Fernández-Duque - 2022 - Journal of Symbolic Logic 87 (3):995-1022.
    The language of linear temporal logic can be interpreted on the class of dynamic topological systems, giving rise to the intuitionistic temporal logic ${\sf ITL}^{\sf c}_{\Diamond \forall }$, recently shown to be decidable by Fernández-Duque. In this article we axiomatize this logic, some fragments, and prove completeness for several familiar spaces.
    Download  
     
    Export citation  
     
    Bookmark  
  • On algebraic and topological semantics of the modal logic of common knowledge S4CI.Daniyar Shamkanov - 2024 - Logic Journal of the IGPL 32 (1):164-179.
    For the modal logic $\textsf {S4}^{C}_{I}$, we identify the class of completable $\textsf {S4}^{C}_{I}$-algebras and prove for them a Stone-type representation theorem. As a consequence, we obtain strong algebraic and topological completeness of the logic $\textsf {S4}^{C}_{I}$ in the case of local semantic consequence relations. In addition, we consider an extension of the logic $\textsf {S4}^{C}_{I}$ with certain infinitary derivations and establish the corresponding strong completeness results for the enriched system in the case of global semantic consequence relations.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Baire Closure and its Logic.G. Bezhanishvili & D. Fernández-Duque - 2024 - Journal of Symbolic Logic 89 (1):27-49.
    The Baire algebra of a topological space X is the quotient of the algebra of all subsets of X modulo the meager sets. We show that this Boolean algebra can be endowed with a natural closure operator, resulting in a closure algebra which we denote $\mathbf {Baire}(X)$. We identify the modal logic of such algebras to be the well-known system $\mathsf {S5}$, and prove soundness and strong completeness for the cases where X is crowded and either completely metrizable and continuum-sized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Finite Model Property for Logics with the Tangle Modality.Robert Goldblatt & Ian Hodkinson - 2018 - Studia Logica 106 (1):131-166.
    The tangle modality is a propositional connective that extends basic modal logic to a language that is expressively equivalent over certain classes of finite frames to the bisimulation-invariant fragments of both first-order and monadic second-order logic. This paper axiomatises several logics with tangle, including some that have the universal modality, and shows that they have the finite model property for Kripke frame semantics. The logics are specified by a variety of conditions on their validating frames, including local and global connectedness (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strong Completeness of Modal Logics Over 0-Dimensional Metric Spaces.Robert Goldblatt & Ian Hodkinson - 2020 - Review of Symbolic Logic 13 (3):611-632.
    We prove strong completeness results for some modal logics with the universal modality, with respect to their topological semantics over 0-dimensional dense-in-themselves metric spaces. We also use failure of compactness to show that, for some languages and spaces, no standard modal deductive system is strongly complete.
    Download  
     
    Export citation  
     
    Bookmark