Switch to: References

Add citations

You must login to add citations.
  1. P ≠ NP for all infinite Boolean algebras.Mihai Prunescu - 2003 - Mathematical Logic Quarterly 49 (2):210-213.
    We prove that all infinite Boolean rings have the property P ≠ NP according to the digital nondeterminism.
    Download  
     
    Export citation  
     
    Bookmark  
  • Saturation and stability in the theory of computation over the reals.Olivier Chapuis & Pascal Koiran - 1999 - Annals of Pure and Applied Logic 99 (1-3):1-49.
    This paper was motivated by the following two questions which arise in the theory of complexity for computation over ordered rings in the now famous computational model introduced by Blum, Shub and Smale: 1. is the answer to the question P = ?NP the same in every real-closed field?2. if P ≠ NP for , does there exist a problem of which is NP but neither P nor NP-complete ?Some unclassical complexity classes arise naturally in the study of these questions. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation