Switch to: References

Add citations

You must login to add citations.
  1. Predicative Classes and Strict Potentialism.Øystein Linnebo & Stewart Shapiro - forthcoming - Philosophia Mathematica:nkae020.
    While sets are combinatorial collections, defined by their elements, classes are logical collections, defined by their membership conditions. We develop, in a potentialist setting, a predicative approach to (logical) classes of (combinatorial) sets. Some reasons emerge to adopt a stricter form of potentialism, which insists, not only that each object is generated at some stage of an incompletable process, but also that each truth is “made true” at some such stage. The natural logic of this strict form of potentialism is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logical Foundations and Kant's Principles of Formal Logic.Srećko Kovač - 2020 - History and Philosophy of Logic 41 (1):48-70.
    The abstract status of Kant's account of his ‘general logic’ is explained in comparison with Gödel's general definition of a formal logical system and reflections on ‘abstract’ (‘absolute’) concepts. Thereafter, an informal reconstruction of Kant's general logic is given from the aspect of the principles of contradiction, of sufficient reason, and of excluded middle. It is shown that Kant's composition of logic consists in a gradual strengthening of logical principles, starting from a weak principle of contradiction that tolerates a sort (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some forms of excluded middle for linear orders.Peter Schuster & Daniel Wessel - 2019 - Mathematical Logic Quarterly 65 (1):105-107.
    The intersection of a linearly ordered set of total subrelations of a total relation with range 2 need not be total, constructively.
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinite Populations, Choice and Determinacy.Tadeusz Litak - 2018 - Studia Logica 106 (5):969-999.
    This paper criticizes non-constructive uses of set theory in formal economics. The main focus is on results on preference aggregation and Arrow’s theorem for infinite electorates, but the present analysis would apply as well, e.g., to analogous results in intergenerational social choice. To separate justified and unjustified uses of infinite populations in social choice, I suggest a principle which may be called the Hildenbrand criterion and argue that results based on unrestricted axiom of choice do not meet this criterion. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Functional interpretation of Aczel's constructive set theory.Wolfgang Burr - 2000 - Annals of Pure and Applied Logic 104 (1-3):31-73.
    In the present paper we give a functional interpretation of Aczel's constructive set theories CZF − and CZF in systems T ∈ and T ∈ + of constructive set functionals of finite types. This interpretation is obtained by a translation × , a refinement of the ∧ -translation introduced by Diller and Nahm 49–66) which again is an extension of Gödel's Dialectica translation. The interpretation theorem gives characterizations of the definable set functions of CZF − and CZF in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A minimalist two-level foundation for constructive mathematics.Maria Emilia Maietti - 2009 - Annals of Pure and Applied Logic 160 (3):319-354.
    We present a two-level theory to formalize constructive mathematics as advocated in a previous paper with G. Sambin.One level is given by an intensional type theory, called Minimal type theory. This theory extends a previous version with collections.The other level is given by an extensional set theory that is interpreted in the first one by means of a quotient model.This two-level theory has two main features: it is minimal among the most relevant foundations for constructive mathematics; it is constructive thanks (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Extending strongly continuous functions between apartness spaces.Luminiţa Simona Vîţă - 2006 - Archive for Mathematical Logic 45 (3):351-356.
    A natural extension theorem for strongly continuous mappings, the morphisms in the category of apartness spaces, is proved constructively.
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth definitions, Skolem functions and axiomatic set theory.Jaakko Hintikka - 1998 - Bulletin of Symbolic Logic 4 (3):303-337.
    §1. The mission of axiomatic set theory. What is set theory needed for in the foundations of mathematics? Why cannot we transact whatever foundational business we have to transact in terms of our ordinary logic without resorting to set theory? There are many possible answers, but most of them are likely to be variations of the same theme. The core area of ordinary logic is by a fairly common consent the received first-order logic. Why cannot it take care of itself? (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Does Choice Really Imply Excluded Middle? Part II: Historical, Philosophical, and Foundational Reflections on the Goodman–Myhill Result†.Neil Tennant - 2021 - Philosophia Mathematica 29 (1):28-63.
    Our regimentation of Goodman and Myhill’s proof of Excluded Middle revealed among its premises a form of Choice and an instance of Separation.Here we revisit Zermelo’s requirement that the separating property be definite. The instance that Goodman and Myhill used is not constructively warranted. It is that principle, and not Choice alone, that precipitates Excluded Middle.Separation in various axiomatizations of constructive set theory is examined. We conclude that insufficient critical attention has been paid to how those forms of Separation fail, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The first-order logic of CZF is intuitionistic first-order logic.Robert Passmann - 2024 - Journal of Symbolic Logic 89 (1):308-330.
    We prove that the first-order logic of CZF is intuitionistic first-order logic. To do so, we introduce a new model of transfinite computation (Set Register Machines) and combine the resulting notion of realisability with Beth semantics. On the way, we also show that the propositional admissible rules of CZF are exactly those of intuitionistic propositional logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionistic Mereology II: Overlap and Disjointness.Paolo Maffezioli & Achille C. Varzi - 2023 - Journal of Philosophical Logic 52 (4):1197-1233.
    This paper extends the axiomatic treatment of intuitionistic mereology introduced in Maffezioli and Varzi (_Synthese, 198_(S18), 4277–4302 2021 ) by examining the behavior of constructive notions of overlap and disjointness. We consider both (i) various ways of defining such notions in terms of other intuitionistic mereological primitives, and (ii) the possibility of treating them as mereological primitives of their own.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Excluded Middle versus Choice in a topos.Bernhard Banaschewski - 2005 - Mathematical Logic Quarterly 51 (3):282.
    It is shown for an arbitrary topos that the Law of the Excluded Middle holds in its propositional logic iff it satisfies the limited choice principle that every epimorphism from 2 = 1 ⊕ 1 splits.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The axiom of choice.John L. Bell - 2008 - Stanford Encyclopedia of Philosophy.
    The principle of set theory known as the Axiom of Choice has been hailed as “probably the most interesting and, in spite of its late appearance, the most discussed axiom of mathematics, second only to Euclid's axiom of parallels which was introduced more than two thousand years ago” (Fraenkel, Bar-Hillel & Levy 1973, §II.4). The fulsomeness of this description might lead those unfamiliar with the axiom to expect it to be as startling as, say, the Principle of the Constancy of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The axiom of choice and the law of excluded middle in weak set theories.John L. Bell - 2008 - Mathematical Logic Quarterly 54 (2):194-201.
    A weak form of intuitionistic set theory WST lacking the axiom of extensionality is introduced. While WST is too weak to support the derivation of the law of excluded middle from the axiom of choice, we show that bee.ng up WST with moderate extensionality principles or quotient sets enables the derivation to go through.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Independence, randomness and the axiom of choice.Michiel van Lambalgen - 1992 - Journal of Symbolic Logic 57 (4):1274-1304.
    We investigate various ways of introducing axioms for randomness in set theory. The results show that these axioms, when added to ZF, imply the failure of AC. But the axiom of extensionality plays an essential role in the derivation, and a deeper analysis may ultimately show that randomness is incompatible with extensionality.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • All the mathematics in the world: logical validity and classical set theory.David Charles McCarty - 2017 - Philosophical Problems in Science 63:5-29.
    A recognizable topological model construction shows that any consistent principles of classical set theory, including the validity of the law of the excluded third, together with a standard class theory, do not suffice to demonstrate the general validity of the law of the excluded third. This result calls into question the classical mathematician's ability to offer solid justifications for the logical principles he or she favors.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reflections on function spaces.Douglas S. Bridges - 2012 - Annals of Pure and Applied Logic 163 (2):101-110.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Constructive mathematics.Douglas Bridges - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Concepts and aims of functional interpretations: Towards a functional interpretation of constructive set theory.Wolfgang Burr - 2002 - Synthese 133 (1-2):257 - 274.
    The aim of this article is to give an introduction to functional interpretations of set theory given by the authorin Burr (2000a). The first part starts with some general remarks on Gödel's functional interpretation with a focus on aspects related to problems that arise in the context of set theory. The second part gives an insight in the techniques needed to perform a functional interpretation of systems of set theory. However, the first part of this article is not intended to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Constructive mathematics in theory and programming practice.Douglas Bridges & Steeve Reeves - 1999 - Philosophia Mathematica 7 (1):65-104.
    The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop's constructive mathematics (BISH). it gives a sketch of both Myhill's axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focusses on the relation between constructive mathematics and programming, with emphasis on Martin-L6f 's theory of types as a formal system for BISH.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Formal Zariski topology: positivity and points.Peter Schuster - 2006 - Annals of Pure and Applied Logic 137 (1-3):317-359.
    The topic of this article is the formal topology abstracted from the Zariski spectrum of a commutative ring. After recollecting the fundamental concepts of a basic open and a covering relation, we study some candidates for positivity. In particular, we present a coinductively generated positivity relation. We further show that, constructively, the formal Zariski topology cannot have enough points.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On adopting Kripke semantics in set theory.Luca Incurvati - 2008 - Review of Symbolic Logic 1 (1):81-96.
    Several philosophers have argued that the logic of set theory should be intuitionistic on the grounds that the open-endedness of the set concept demands the adoption of a nonclassical semantics. This paper examines to what extent adopting such a semantics has revisionary consequences for the logic of our set-theoretic reasoning. It is shown that in the context of the axioms of standard set theory, an intuitionistic semantics sanctions a classical logic. A Kripke semantics in the context of a weaker axiomatization (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • EM + Ext− + ACint is equivalent to ACext.Jesper Carlström - 2004 - Mathematical Logic Quarterly 50 (3):236-240.
    It is well known that the extensional axiom of choice implies the law of excluded middle . We here prove that the converse holds as well if we have the intensional axiom of choice ACint, which is provable in Martin-Löf's type theory, and a weak extensionality principle , which is provable in Martin-Löf's extensional type theory. In particular, EM is equivalent to ACext in extensional type theory.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Countable choice as a questionable uniformity principle.Peter M. Schuster - 2004 - Philosophia Mathematica 12 (2):106-134.
    Should weak forms of the axiom of choice really be accepted within constructive mathematics? A critical view of the Brouwer-Heyting-Kolmogorov interpretation, accompanied by the intention to include nondeterministic algorithms, leads us to subscribe to Richman's appeal for dropping countable choice. As an alternative interpretation of intuitionistic logic, we propose to renew dialogue semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Nonstandard proof methods in toposes.José Siqueira - 2024 - Annals of Pure and Applied Logic 175 (5):103424.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bishop's Lemma.Hannes Diener & Matthew Hendtlass - 2018 - Mathematical Logic Quarterly 64 (1-2):49-54.
    Bishop's Lemma is a centrepiece in the development of constructive analysis. We show that its proof requires some form of the axiom of choice; and that the completeness requirement in Bishop's Lemma can be weakened and that there is a vast class of non‐complete spaces that Bishop's Lemma applies to.
    Download  
     
    Export citation  
     
    Bookmark  
  • An indeterminate universe of sets.Chris Scambler - 2020 - Synthese 197 (2):545-573.
    In this paper, I develop a view on set-theoretic ontology I call Universe-Indeterminism, according to which there is a unique but indeterminate universe of sets. I argue that Solomon Feferman’s work on semi-constructive set theories can be adapted to this project, and develop a philosophical motivation for a semi-constructive set theory closely based on Feferman’s but tailored to the Universe-Indeterminist’s viewpoint. I also compare the emergent Universe-Indeterminist view to some more familiar views on set-theoretic ontology.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Review of M. Machover, Set Theory, Logic and their Limitations[REVIEW]G. E. Weaver - 1998 - Philosophia Mathematica 6 (2):255-255.
    Download  
     
    Export citation  
     
    Bookmark  
  • Does Choice Really Imply Excluded Middle? Part I: Regimentation of the Goodman–Myhill Result, and Its Immediate Reception†.Neil Tennant - 2020 - Philosophia Mathematica 28 (2):139-171.
    The one-page 1978 informal proof of Goodman and Myhill is regimented in a weak constructive set theory in free logic. The decidability of identities in general (⁠|$a\!=\!b\vee\neg a\!=\!b$|⁠) is derived; then, of sentences in general (⁠|$\psi\vee\neg\psi$|⁠). Martin-Löf’s and Bell’s receptions of the latter result are discussed. Regimentation reveals the form of Choice used in deriving Excluded Middle. It also reveals an abstraction principle that the proof employs. It will be argued that the Goodman–Myhill result does not provide the constructive set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • EM + Ext_ + AC~i~n~t is equivalent to AC~e~x~t.Jesper Carlström - 2004 - Mathematical Logic Quarterly 50 (3):236.
    It is well known that the extensional axiom of choice implies the law of excluded middle. We here prove that the converse holds as well if we have the intensional axiom of choice ACint, which is provable in Martin-Löf's type theory, and a weak extensionality principle, which is provable in Martin-Löf's extensional type theory. In particular, EM is equivalent to ACext in extensional type theory.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Extending constructive operational set theory by impredicative principles.Andrea Cantini - 2011 - Mathematical Logic Quarterly 57 (3):299-322.
    We study constructive set theories, which deal with operations applying both to sets and operations themselves. Our starting point is a fully explicit, finitely axiomatized system ESTE of constructive sets and operations, which was shown in 10 to be as strong as PA. In this paper we consider extensions with operations, which internally represent description operators, unbounded set quantifiers and local fixed point operators. We investigate the proof theoretic strength of the resulting systems, which turn out to be impredicative . (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations