Citations of:
Add citations
You must login to add citations.


Constructive logic with Nelson negation is an extension of the intuitionistic logic with a special type of negation expressing some features of constructive falsity and refutation by counterexample. In this paper we generalize this logic weakening maximally the underlying intuitionistic negation. The resulting system, called subminimal logic with Nelson negation, is studied by means of a kind of algebras called generalized Nlattices. We show that generalized Nlattices admit representation formalizing the intuitive idea of refutation by means of counterexamples giving in (...) 

Certain extensions of Nelson's constructive logic N with strong negation have recently become important in arti.cial intelligence and nonmonotonic reasoning, since they yield a logical foundation for answer set programming (ASP). In this paper we look at some extensions of Nelson's .rstorder logic as a basis for de.ning nonmonotonic inference relations that underlie the answer set programming semantics. The extensions we consider are those based on 2element, hereandthere Kripke frames. In particular, we prove completeness for .rstorder hereandthere logics, and their (...) 

The article is devoted to the systematic study of the lattice εN4⊥ consisting of logics extending N4⊥. The logic N4⊥ is obtained from paraconsistent Nelson logic N4 by adding the new constant ⊥ and axioms ⊥ → p, p → ∼ ⊥. We study interrelations between εN4⊥ and the lattice of superintuitionistic logics. Distinguish in εN4⊥ basic subclasses of explosive logics, normal logics, logics of general form and study how they are relate. 

The main aim of the present paper is to explain a nature of relationships exist between Nelson and Heyting algebras. In the realization, a topological duality theory of Heyting and Nelson algebras based on the topological duality theory of Priestley for bounded distributive lattices are applied. The general method of construction of spaces dual to Nelson algebras from a given dual space to Heyting algebra is described. The algebraic counterpart of this construction being a generalization of the FidelVakarelov construction is (...) 

In this paper we will study the properties of the least extension n(Λ) of a given intermediate logic Λ by a strong negation. It is shown that the mapping from Λ to n(Λ) is a homomorphism of complete lattices, preserving and reflecting finite model property, framecompleteness, interpolation and decidability. A general characterization of those constructive logics is given which are of the form n(Λ). This summarizes results that can be found already in [13, 14] and [4]. Furthermore, we determine the (...) 

The paper is devoted to the contributions of Helena Rasiowa to the theory of nonclassical negation. The main results of Rasiowa in this area concerns–constructive logic with strong (Nelson) negation. 

We study axiomatic extensions of the propositional constructive logic with strong negation having the disjunction property in terms of corresponding to them varieties of Nelson algebras. Any such varietyV is characterized by the property: (PQWC) ifA,B V, thenA×B is a homomorphic image of some wellconnected algebra ofV.We prove:• each varietyV of Nelson algebras with PQWC lies in the fibre –1(W) for some varietyW of Heyting algebras having PQWC, • for any varietyW of Heyting algebras with PQWC the least and the (...) 