Switch to: References

Add citations

You must login to add citations.
  1. Extended bar induction in applicative theories.G. R. Renardel Delavalette - 1990 - Annals of Pure and Applied Logic 50 (2):139-189.
    TAPP is a total applicative theory, conservative over intuitionistic arithmetic. In this paper, we first show that the same holds for TAPP+ the choice principle EAC; then we extend TAPP with choice sequences and study the principle EBIa0. The resulting theories are used to characterise the arithmetical fragment of EL +EBIa0. As a digression, we use TAPP to show that P. Martin-Löf's basic extensional theory ML0 is conservative over intuitionistic arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Totality in applicative theories.Gerhard Jäger & Thomas Strahm - 1995 - Annals of Pure and Applied Logic 74 (2):105-120.
    In this paper we study applicative theories of operations and numbers with the non-constructive minimum operator in the context of a total application operation. We determine the proof-theoretic strength of such theories by relating them to well-known systems like Peano Arithmetic PA and the system <0 of second order arithmetic. Essential use will be made of so-called fixed-point theories with ordinals, certain infinitary term models and Church-Rosser properties.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Extended bar induction in applicative theories.Gerard R. Renardel de Lavalette - 1990 - Annals of Pure and Applied Logic 50 (2):139-189.
    TAPP is a total applicative theory, conservative over intuitionistic arithmetic. In this paper, we first show that the same holds for TAPP+ the choice principle EAC; then we extend TAPP with choice sequences and study the principle EBIa0 . The resulting theories are used to characterise the arithmetical fragment of EL +EBIa0. As a digression, we use TAPP to show that P. Martin-Löf's basic extensional theory ML0 is conservative over intuitionistic arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Levels of Truth.Andrea Cantini - 1995 - Notre Dame Journal of Formal Logic 36 (2):185-213.
    This paper is concerned with the interaction between formal semantics and the foundations of mathematics. We introduce a formal theory of truth, TLR, which extends the classical first order theory of pure combinators with a primitive truth predicate and a family of truth approximations, indexed by a directed partial ordering. TLR naturally works as a theory of partial classifications, in which type-free comprehension coexists with functional abstraction. TLR provides an inner model for a well known subsystem of second order arithmetic; (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π 1 -equivalent to KP.Kentaro Sato & Rico Zumbrunnen - 2015 - Annals of Pure and Applied Logic 166 (2):121-186.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Extensional Realizability and Choice for Dependent Types in Intuitionistic Set Theory.Emanuele Frittaion - 2023 - Journal of Symbolic Logic 88 (3):1138-1169.
    In [17], we introduced an extensional variant of generic realizability [22], where realizers act extensionally on realizers, and showed that this form of realizability provides inner models of $\mathsf {CZF}$ (constructive Zermelo–Fraenkel set theory) and $\mathsf {IZF}$ (intuitionistic Zermelo–Fraenkel set theory), that further validate $\mathsf {AC}_{\mathsf {FT}}$ (the axiom of choice in all finite types). In this paper, we show that extensional generic realizability validates several choice principles for dependent types, all exceeding $\mathsf {AC}_{\mathsf {FT}}$. We then show that adding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof-theoretic conservations of weak weak intuitionistic constructive set theories.Lev Gordeev - 2013 - Annals of Pure and Applied Logic 164 (12):1274-1292.
    The paper aims to provide precise proof theoretic characterizations of Myhill–Friedman-style “weak” constructive extensional set theories and Aczel–Rathjen analogous constructive set theories both enriched by Mostowski-style collapsing axioms and/or related anti-foundation axioms. The main results include full intuitionistic conservations over the corresponding purely arithmetical formalisms that are well known in the reverse mathematics – which strengthens analogous results obtained by the author in the 80s. The present research was inspired by the more recent Sato-style “weak weak” classical extensional set theories (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation