Switch to: References

Add citations

You must login to add citations.
  1. Chance versus Randomness.Antony Eagle - 2010 - Stanford Encyclopedia of Philosophy.
    This article explores the connection between objective chance and the randomness of a sequence of outcomes. Discussion is focussed around the claim that something happens by chance iff it is random. This claim is subject to many objections. Attempts to save it by providing alternative theories of chance and randomness, involving indeterminism, unpredictability, and reductionism about chance, are canvassed. The article is largely expository, with particular attention being paid to the details of algorithmic randomness, a topic relatively unfamiliar to philosophers.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Rigour and Proof.Oliver Tatton-Brown - 2023 - Review of Symbolic Logic 16 (2):480-508.
    This paper puts forward a new account of rigorous mathematical proof and its epistemology. One novel feature is a focus on how the skill of reading and writing valid proofs is learnt, as a way of understanding what validity itself amounts to. The account is used to address two current questions in the literature: that of how mathematicians are so good at resolving disputes about validity, and that of whether rigorous proofs are necessarily formalizable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Euler’s Königsberg: the explanatory power of mathematics.Tim Räz - 2018 - European Journal for Philosophy of Science 8 (3):331-346.
    The present paper provides an analysis of Euler’s solutions to the Königsberg bridges problem. Euler proposes three different solutions to the problem, addressing their strengths and weaknesses along the way. I put the analysis of Euler’s paper to work in the philosophical discussion on mathematical explanations. I propose that the key ingredient to a good explanation is the degree to which it provides relevant information. Providing relevant information is based on knowledge of the structure in question, graphs in the present (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophy of the Matrix.A. C. Paseau - 2017 - Philosophia Mathematica 25 (2):246-267.
    A mathematical matrix is usually defined as a two-dimensional array of scalars. And yet, as I explain, matrices are not in fact two-dimensional arrays. So are we to conclude that matrices do not exist? I show how to resolve the puzzle, for both contemporary and older mathematics. The solution generalises to the interpretation of all mathematical discourse. The paper as a whole attempts to reinforce mathematical structuralism by reflecting on how best to interpret mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Polemics in Public: Poncelet, Gergonne, Plücker, and the Duality Controversy.Jemma Lorenat - 2015 - Science in Context 28 (4):545-585.
    ArgumentA plagiarism charge in 1827 sparked a public controversy centered between Jean-Victor Poncelet (1788–1867) and Joseph-Diez Gergonne (1771–1859) over the origin and applications of the principle of duality in geometry. Over the next three years and through the pages of various journals, monographs, letters, reviews, reports, and footnotes, vitriol between the antagonists increased as their potential publicity grew. While the historical literature offers valuable resources toward understanding the development, content, and applications of geometric duality, the hostile nature of the exchange (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Euler’s Königsberg: the explanatory power of mathematics.Tim Räz - 2017 - European Journal for Philosophy of Science 8:331–46.
    The present paper provides an analysis of Euler’s solutions to the Königsberg bridges problem. Euler proposes three different solutions to the problem, addressing their strengths and weaknesses along the way. I put the analysis of Euler’s paper to work in the philosophical discussion on mathematical explanations. I propose that the key ingredient to a good explanation is the degree to which it provides relevant information. Providing relevant information is based on knowledge of the structure in question, graphs in the present (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Thinking Materially: Cognition as Extended and Enacted.Karenleigh A. Overmann - 2017 - Journal of Cognition and Culture 17 (3-4):354-373.
    Human cognition is extended and enacted. Drawing the boundaries of cognition to include the resources and attributes of the body and materiality allows an examination of how these components interact with the brain as a system, especially over cultural and evolutionary spans of time. Literacy and numeracy provide examples of multigenerational, incremental change in both psychological functioning and material forms. Though we think materiality, its central role in human cognition is often unappreciated, for reasons that include conceptual distribution over multiple (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • ¿Es necesariamente verdadero que si un enunciado geométrico es verdadero, es necesariamente verdadero?Emilio Méndez Pinto - 2019 - Dianoia 64 (82):61-84.
    En este ensayo respondo negativamente a la pregunta del título al sostener que el enunciado “La suma de los ángulos internos de un triángulo es igual a 180°” es contingentemente verdadero. Para ello, intento refutar la tesis de Ramsey de que las verdades geométricas necesariamente son verdades necesarias, así como la tesis de Kripke de que no puede haber proposiciones matemáticas contingentemente verdaderas. Además, recurriendo a la concepción fregeana sobre lo a priori y lo a posteriori, sostengo que hay verdades (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanation beyond Explanatory Proof.William D’Alessandro - 2017 - British Journal for the Philosophy of Science 71 (2):581-603.
    Much recent work on mathematical explanation has presupposed that the phenomenon involves explanatory proofs in an essential way. I argue that this view, ‘proof chauvinism’, is false. I then look in some detail at the explanation of the solvability of polynomial equations provided by Galois theory, which has often been thought to revolve around an explanatory proof. The article concludes with some general worries about the effects of chauvinism on the theory of mathematical explanation. 1Introduction 2Why I Am Not a (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Structuralism and Mathematical Practice in Felix Klein’s Work on Non-Euclidean Geometry†.Biagioli Francesca - 2020 - Philosophia Mathematica 28 (3):360-384.
    It is well known that Felix Klein took a decisive step in investigating the invariants of transformation groups. However, less attention has been given to Klein’s considerations on the epistemological implications of his work on geometry. This paper proposes an interpretation of Klein’s view as a form of mathematical structuralism, according to which the study of mathematical structures provides the basis for a better understanding of how mathematical research and practice develop.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Duality in Logic and Language.Lorenz Demey, and & Hans Smessaert - 2016 - Internet Encyclopedia of Philosophy.
    Duality in Logic and Language [draft--do not cite this article] Duality phenomena occur in nearly all mathematically formalized disciplines, such as algebra, geometry, logic and natural language semantics. However, many of these disciplines use the term ‘duality’ in vastly different senses, and while some of these senses are intimately connected to each other, others seem to be entirely … Continue reading Duality in Logic and Language →.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The enigma is not entirely dispelled: A review of Mercier and Sperber's The Enigma of Reason[REVIEW]Nick Chater & Mike Oaksford - 2018 - Mind and Language 33 (5):525-532.
    Mercier and Sperber illuminate many aspects of reasoning and rationality, providing refreshing and thoughtful analysis and elegant and well‐researched illustrations. They make a good case that reasoning should be viewed as a type of intuition, rather than a separate cognitive process or system. Yet questions remain. In what sense, if any, is reasoning a “module?” What is the link between rationality within an individual and rationality defined through the interaction between individuals? Formal theories of rationality, from logic, probability theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Rigour and Intuition.Oliver Tatton-Brown - 2019 - Erkenntnis 86 (6):1757-1781.
    This paper sketches an account of the standard of acceptable proof in mathematics—rigour—arguing that the key requirement of rigour in mathematics is that nontrivial inferences be provable in greater detail. This account is contrasted with a recent perspective put forward by De Toffoli and Giardino, who base their claims on a case study of an argument from knot theory. I argue that De Toffoli and Giardino’s conclusions are not supported by the case study they present, which instead is a very (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Topology, Algebra, Diagrams.Brian Rotman - 2012 - Theory, Culture and Society 29 (4-5):247-260.
    Starting from Poincaré’s assignment of an algebraic object to a topological manifold, namely the fundamental group, this article introduces the concept of categories and their language of arrows that has, since their mid-20th-century inception, altered how large areas of mathematics, from algebra to abstract logic and computer programming, are conceptualized. The assignment of the fundamental group is an example of a functor, an arrow construction central to the notion of a category. The exposition of category theory’s arrows, which operate at (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Biologist’s View of Creation.James A. Morris - 2019 - Open Journal of Philosophy 9 (1):15-34.
    Download  
     
    Export citation  
     
    Bookmark