Switch to: References

Add citations

You must login to add citations.
  1. Ethical Challenges of Simulation-Driven Big Neuroscience.Markus Christen, Nikola Biller-Andorno, Berit Bringedal, Kevin Grimes, Julian Savulescu & Henrik Walter - 2016 - American Journal of Bioethics Neuroscience 7 (1):5-17.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computer Simulations Then and Now: an Introduction and Historical Reassessment.Arianna Borrelli & Janina Wellmann - 2019 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 27 (4):407-417.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How can computer simulations produce new knowledge?Claus Beisbart - 2012 - European Journal for Philosophy of Science 2 (3):395-434.
    It is often claimed that scientists can obtain new knowledge about nature by running computer simulations. How is this possible? I answer this question by arguing that computer simulations are arguments. This view parallels Norton’s argument view about thought experiments. I show that computer simulations can be reconstructed as arguments that fully capture the epistemic power of the simulations. Assuming the extended mind hypothesis, I furthermore argue that running the computer simulation is to execute the reconstructing argument. I discuss some (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Are computer simulations experiments? And if not, how are they related to each other?Claus Beisbart - 2018 - European Journal for Philosophy of Science 8 (2):171-204.
    Computer simulations and experiments share many important features. One way of explaining the similarities is to say that computer simulations just are experiments. This claim is quite popular in the literature. The aim of this paper is to argue against the claim and to develop an alternative explanation of why computer simulations resemble experiments. To this purpose, experiment is characterized in terms of an intervention on a system and of the observation of the reaction. Thus, if computer simulations are experiments, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Wissenschaft ohne Wahrheit und Erkenntnis. Das Problem epistemischer Verantwortung am Beispiel empirieferner Computersimulationen.Eckhart Arnold - 2013 - In Rafaela Hillerbrand & Florian Steger (eds.), Praxisfelder Angewandter Ethik. Ethische Orientierung in Medizin, Politik, Technik Und Wirtschaft. Münster: Mentis Verlag. pp. 309-331.
    Epistemic Responsibility means that scientists are responsible for their research being suitable to contribute to our understanding of the world, or at least some part of the world. As will be shown with the example of computer simulations in social sciences, this is unfortunately far from being understood as a matter of course. Rather, there exist whole research traditions in which the bulk of the contributions is quite free from any tangible purpose of enhancing our knowledge about anything. This essay (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Homepage Eckhart Arnold.Eckhart Arnold (ed.) - 2001 - Munich: Preprint.
    This is my personal homepage. Find my philosophical papers under "Philosophy".
    Download  
     
    Export citation  
     
    Bookmark  
  • Gluing life together. Computer simulation in the life sciences: an introduction.Janina Wellmann - 2018 - History and Philosophy of the Life Sciences 40 (4):70.
    Over the course of the last three decades, computer simulations have become a major tool of doing science and engaging with the world, not least in an effort to predict and intervene in a future to come. Born in the context of the Second World War and the discipline of physics, simulations have long spread into most diverse fields of enquiry and technological application. This paper introduces a topical collection focussing on simulations in the life sciences. Echoing the current state (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is a Computer Simulation? A Review of a Passionate Debate.Nicole J. Saam - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):293-309.
    Where should computer simulations be located on the ‘usual methodological map’ which distinguishes experiment from theory? Specifically, do simulations ultimately qualify as experiments or as thought experiments? Ever since Galison raised that question, a passionate debate has developed, pushing many issues to the forefront of discussions concerning the epistemology and methodology of computer simulation. This review article illuminates the positions in that debate, evaluates the discourse and gives an outlook on questions that have not yet been addressed.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • “Mr. Database”„Mr. Database“.Nils C. Hanwahr - 2017 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 25 (4):519-542.
    Although the widespread use of the term “Big Data” is comparatively recent, it invokes a phenomenon in the developments of database technology with distinct historical contexts. The database engineer Jim Gray, known as “Mr. Database” in Silicon Valley before his disappearance at sea in 2007, was involved in many of the crucial developments since the 1970s that constitute the foundation of exceedingly large and distributed databases. Jim Gray was involved in the development of relational database systems based on the concepts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • “Mr. Database”: Jim Gray and the History of Database Technologies.Nils C. Hanwahr - 2017 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 25 (4):519-542.
    Although the widespread use of the term “Big Data” is comparatively recent, it invokes a phenomenon in the developments of database technology with distinct historical contexts. The database engineer Jim Gray, known as “Mr. Database” in Silicon Valley before his disappearance at sea in 2007, was involved in many of the crucial developments since the 1970s that constitute the foundation of exceedingly large and distributed databases. Jim Gray was involved in the development of relational database systems based on the concepts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Give Me an Experiment and I Will Raise a Laboratory.Matthias Gross - 2016 - Science, Technology, and Human Values 41 (4):613-634.
    Bruno Latour once argued that science laboratories actively modify the wider society by displacing crucial actors outside the laboratory into the “field.” This article turns this idea on its head by using the case of geothermal energy utilization to demonstrate that in many cases it is the experimental setup outside the laboratory that is there first, with the activities normally associated with a laboratory setting only being decided upon and implemented post hoc. As soon as the actors involved perceive unknowns (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Continuous culture techniques as simulators for standard cells: Jacques Monod’s, Aron Novick’s and Leo Szilard’s quantitative approach to microbiology.Gabriele Gramelsberger - 2018 - History and Philosophy of the Life Sciences 40 (1):23.
    Continuous culture techniques were developed in the early twentieth century to replace cumbersome studies of cell growth in batch cultures. In contrast to batch cultures, they constituted an open concept, as cells are forced to proliferate by adding new medium while cell suspension is constantly removed. During the 1940s and 1950s new devices have been designed—called “automatic syringe mechanism,” “turbidostat,” “chemostat,” “bactogen,” and “microbial auxanometer”—which allowed increasingly accurate quantitative measurements of bacterial growth. With these devices cell growth came under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Big Data – The New Science of Complexity.Wolfgang Pietsch - unknown
    Data-intensive techniques, now widely referred to as 'big data', allow for novel ways to address complexity in science. I assess their impact on the scientific method. First, big-data science is distinguished from other scientific uses of information technologies, in particular from computer simulations. Then, I sketch the complex and contextual nature of the laws established by data-intensive methods and relate them to a specific concept of causality, thereby dispelling the popular myth that big data is only concerned with correlations. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tools for Evaluating the Consequences of Prior Knowledge, but no Experiments. On the Role of Computer Simulations in Science.Eckhart Arnold - manuscript
    There is an ongoing debate on whether or to what degree computer simulations can be likened to experiments. Many philosophers are sceptical whether a strict separation between the two categories is possible and deny that the materiality of experiments makes a difference (Morrison 2009, Parker 2009, Winsberg 2010). Some also like to describe computer simulations as a “third way” between experimental and theoretical research (Rohrlich 1990, Axelrod 2003, Kueppers/Lenhard 2005). In this article I defend the view that computer simulations are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation