Switch to: References

Add citations

You must login to add citations.
  1. Gluing life together. Computer simulation in the life sciences: an introduction.Janina Wellmann - 2018 - History and Philosophy of the Life Sciences 40 (4):70.
    Over the course of the last three decades, computer simulations have become a major tool of doing science and engaging with the world, not least in an effort to predict and intervene in a future to come. Born in the context of the Second World War and the discipline of physics, simulations have long spread into most diverse fields of enquiry and technological application. This paper introduces a topical collection focussing on simulations in the life sciences. Echoing the current state (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Synthetic Morphology: A Vision of Engineering Biological Form.Gabriele Gramelsberger - 2020 - Journal of the History of Biology 53 (2):295-309.
    Morphological engineering is an emerging research area in synthetic biology. In 2008 “synthetic morphology” was proposed as a prospective approach to engineering self-constructing anatomies by Jamie A. Davies of the University of Edinburgh. Synthetic morphology can establish a new paradigm, according to Davies, insofar as “cells can be programmed to organize themselves into specific, designed arrangements, structures and tissues.” It is obvious that this new approach will extrapolate morphology into a new realm beyond the traditional logic of morphological research. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Continuous culture techniques as simulators for standard cells: Jacques Monod’s, Aron Novick’s and Leo Szilard’s quantitative approach to microbiology.Gabriele Gramelsberger - 2018 - History and Philosophy of the Life Sciences 40 (1):23.
    Continuous culture techniques were developed in the early twentieth century to replace cumbersome studies of cell growth in batch cultures. In contrast to batch cultures, they constituted an open concept, as cells are forced to proliferate by adding new medium while cell suspension is constantly removed. During the 1940s and 1950s new devices have been designed—called “automatic syringe mechanism,” “turbidostat,” “chemostat,” “bactogen,” and “microbial auxanometer”—which allowed increasingly accurate quantitative measurements of bacterial growth. With these devices cell growth came under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation