Switch to: References

Add citations

You must login to add citations.
  1. Do the Ends Justify the Means? Variation in the Distributive and Procedural Fairness of Machine Learning Algorithms.Lily Morse, Mike Horia M. Teodorescu, Yazeed Awwad & Gerald C. Kane - 2021 - Journal of Business Ethics 181 (4):1083-1095.
    Recent advances in machine learning methods have created opportunities to eliminate unfairness from algorithmic decision making. Multiple computational techniques (i.e., algorithmic fairness criteria) have arisen out of this work. Yet, urgent questions remain about the perceived fairness of these criteria and in which situations organizations should use them. In this paper, we seek to gain insight into these questions by exploring fairness perceptions of five algorithmic criteria. We focus on two key dimensions of fairness evaluations: distributive fairness and procedural fairness. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations