Switch to: References

Add citations

You must login to add citations.
  1. Local order property in nonelementary classes.Rami Grossberg & Olivier Lessmann - 2000 - Archive for Mathematical Logic 39 (6):439-457.
    . We study a local version of the order property in several frameworks, with an emphasis on frameworks where the compactness theorem fails: (1) Inside a fixed model, (2) for classes of models where the compactness theorem fails and (3) for the first order case. Appropriate localizations of the order property, the independence property, and the strict order property are introduced. We are able to generalize some of the results that were known in the case of local stability for the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinitary stability theory.Sebastien Vasey - 2016 - Archive for Mathematical Logic 55 (3-4):567-592.
    We introduce a new device in the study of abstract elementary classes : Galois Morleyization, which consists in expanding the models of the class with a relation for every Galois type of length less than a fixed cardinal κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}. We show:Theorem 0.1 An AEC K is fully \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa = \beth _{\kappa } > \text {LS}$$\end{document}. If K is Galois stable, then the (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Ranks and pregeometries in finite diagrams.Olivier Lessmann - 2000 - Annals of Pure and Applied Logic 106 (1-3):49-83.
    The study of classes of models of a finite diagram was initiated by S. Shelah in 1969. A diagram D is a set of types over the empty set, and the class of models of the diagram D consists of the models of T which omit all the types not in D. In this work, we introduce a natural dependence relation on the subsets of the models for the 0-stable case which share many of the formal properties of forking. This (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Shelah's stability spectrum and homogeneity spectrum in finite diagrams.Rami Grossberg & Olivier Lessmann - 2002 - Archive for Mathematical Logic 41 (1):1-31.
    We present Saharon Shelah's Stability Spectrum and Homogeneity Spectrum theorems, as well as the equivalence between the order property and instability in the framework of Finite Diagrams. Finite Diagrams is a context which generalizes the first order case. Localized versions of these theorems are presented. Our presentation is based on several papers; the point of view is contemporary and some of the proofs are new. The treatment of local stability in Finite Diagrams is new.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Chains of saturated models in AECs.Will Boney & Sebastien Vasey - 2017 - Archive for Mathematical Logic 56 (3-4):187-213.
    We study when a union of saturated models is saturated in the framework of tame abstract elementary classes with amalgamation. We prove:Theorem 0.1.IfKis a tame AEC with amalgamation satisfying a natural definition of superstability, then for all high-enoughλ:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda {:}$$\end{document}The union of an increasing chain ofλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-saturated models isλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-saturated.There exists a type-full goodλ\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations