Switch to: References

Add citations

You must login to add citations.
  1. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Filippos A. Papagiannopoulos - 2018 - Dissertation, University of Western Ontario
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Representational Foundations of Computation.Michael Rescorla - 2015 - Philosophia Mathematica 23 (3):338-366.
    Turing computation over a non-linguistic domain presupposes a notation for the domain. Accordingly, computability theory studies notations for various non-linguistic domains. It illuminates how different ways of representing a domain support different finite mechanical procedures over that domain. Formal definitions and theorems yield a principled classification of notations based upon their computational properties. To understand computability theory, we must recognize that representation is a key target of mathematical inquiry. We must also recognize that computability theory is an intensional enterprise: it (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Effectiveness in RPL, with applications to continuous logic.Farzad Didehvar, Kaveh Ghasemloo & Massoud Pourmahdian - 2010 - Annals of Pure and Applied Logic 161 (6):789-799.
    In this paper, we introduce a foundation for computable model theory of rational Pavelka logic and continuous logic, and prove effective versions of some related theorems in model theory. We show how to reduce continuous logic to rational Pavelka logic. We also define notions of computability and decidability of a model for logics with computable, but uncountable, set of truth values; we show that provability degree of a formula with respect to a linear theory is computable, and use this to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a simple definition of computable function of a real variable‐with applications to functions of a complex variable.Marian Boykan Pour-El & Jerome Caldwell - 1975 - Mathematical Logic Quarterly 21 (1):1-19.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner DePauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), The Foundational Debate: Complexity and Constructivity in Mathematics and Physics. Dordrecht, Boston and London: Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unrealistic models for realistic computations: how idealisations help represent mathematical structures and found scientific computing.Philippos Papayannopoulos - 2020 - Synthese 199 (1-2):249-283.
    We examine two very different approaches to formalising real computation, commonly referred to as “Computable Analysis” and “the BSS approach”. The main models of computation underlying these approaches—bit computation and BSS, respectively—have also been put forward as appropriate foundations for scientific computing. The two frameworks offer useful computability and complexity results about problems whose underlying domain is an uncountable space. Since typically the problems dealt with in physical sciences, applied mathematics, economics, and engineering are also defined in uncountable domains, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Undecidability in Rn: Riddled basins, the KAM tori, and the stability of the solar system.Matthew W. Parker - 2003 - Philosophy of Science 70 (2):359-382.
    Some have suggested that certain classical physical systems have undecidable long-term behavior, without specifying an appropriate notion of decidability over the reals. We introduce such a notion, decidability in (or d- ) for any measure , which is particularly appropriate for physics and in some ways more intuitive than Ko's (1991) recursive approximability (r.a.). For Lebesgue measure , d- implies r.a. Sets with positive -measure that are sufficiently "riddled" with holes are never d- but are often r.a. This explicates Sommerer (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Two dogmas of computationalism.Oron Shagrir - 1997 - Minds and Machines 7 (3):321-44.
    This paper challenges two orthodox theses: (a) that computational processes must be algorithmic; and (b) that all computed functions must be Turing-computable. Section 2 advances the claim that the works in computability theory, including Turing's analysis of the effective computable functions, do not substantiate the two theses. It is then shown (Section 3) that we can describe a system that computes a number-theoretic function which is not Turing-computable. The argument against the first thesis proceeds in two stages. It is first (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Computing the uncomputable; or, The discrete charm of second-order simulacra.Matthew W. Parker - 2009 - Synthese 169 (3):447-463.
    We examine a case in which non-computable behavior in a model is revealed by computer simulation. This is possible due to differing notions of computability for sets in a continuous space. The argument originally given for the validity of the simulation involves a simpler simulation of the simulation, still further simulations thereof, and a universality conjecture. There are difficulties with that argument, but there are other, heuristic arguments supporting the qualitative results. It is urged, using this example, that absolute validation, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dimension spectra of random subfractals of self-similar fractals.Xiaoyang Gu, Jack H. Lutz, Elvira Mayordomo & Philippe Moser - 2014 - Annals of Pure and Applied Logic 165 (11):1707-1726.
    The dimension of a point x in Euclidean space is the algorithmic information density of x . Roughly speaking, this is the least real number dimdim such that r×dimr×dim bits suffice to specify x on a general-purpose computer with arbitrarily high precision 2−r2−r. The dimension spectrum of a set X in Euclidean space is the subset of [0,n][0,n] consisting of the dimensions of all points in X.The dimensions of points have been shown to be geometrically meaningful , and the dimensions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conditional computability of real functions with respect to a class of operators.Ivan Georgiev & Dimiter Skordev - 2013 - Annals of Pure and Applied Logic 164 (5):550-565.
    For any class of operators which transform unary total functions in the set of natural numbers into functions of the same kind, we define what it means for a real function to be uniformly computable or conditionally computable with respect to this class. These two computability notions are natural generalizations of certain notions introduced in a previous paper co-authored by Andreas Weiermann and in another previous paper by the same authors, respectively. Under certain weak assumptions about the class in question, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lp -Computability.Ning Zhong & Bing-Yu Zhang - 1999 - Mathematical Logic Quarterly 45 (4):449-456.
    In this paper we investigate conditions for Lp-computability which are in accordance with the classical Grzegorczyk notion of computability for a continuous function. For a given computable real number p ≥ 1 and a compact computable rectangle I ⊂ ℝq, we show that an Lp function f ∈ Lp is LP-computable if and only if f is sequentially computable as a linear functional and the Lp-modulus function of f is effectively continuous at the origin of ℝq.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effective content of the calculus of variations I: Semi-continuity and the chattering lemma.Xiaolin Ge & Anil Nerode - 1996 - Annals of Pure and Applied Logic 78 (1-3):127-146.
    The content of existence theorems in the calculus of variations has been explored and an effective treatment of semi-continuity has been achieved. An algorithm has been developed which captures the natural algorithmic content of the notion of a semi-continuous function and this is used to obtain an effective version of the “chattering lemma” of control theory and ordinary differential equations. This lemma reveals the main computational content of the theory of relaxed optimal control.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How Incomputable Is the Separable Hahn-Banach Theorem?Guido Gherardi & Alberto Marcone - 2009 - Notre Dame Journal of Formal Logic 50 (4):393-425.
    We determine the computational complexity of the Hahn-Banach Extension Theorem. To do so, we investigate some basic connections between reverse mathematics and computable analysis. In particular, we use Weak König's Lemma within the framework of computable analysis to classify incomputable functions of low complexity. By defining the multivalued function Sep and a natural notion of reducibility for multivalued functions, we obtain a computational counterpart of the subsystem of second-order arithmetic WKL0. We study analogies and differences between WKL0 and the class (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Approaches to Effective Semi‐Continuity of Real Functions.Xizhong Zheng, Vasco Brattka & Klaus Weihrauch - 1999 - Mathematical Logic Quarterly 45 (4):481-496.
    For semi-continuous real functions we study different computability concepts defined via computability of epigraphs and hypographs. We call a real function f lower semi-computable of type one, if its open hypograph hypo is recursively enumerably open in dom × ℝ; we call f lower semi-computable of type two, if its closed epigraph Epi is recursively enumerably closed in dom × ℝ; we call f lower semi-computable of type three, if Epi is recursively closed in dom × ℝ. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • About and Around Computing Over the Reals.Solomon Feferman - unknown
    1. One theory or many? In 2004 a very interesting and readable article by Lenore Blum, entitled “Computing over the reals: Where Turing meets Newton,” appeared in the Notices of the American Mathematical Society. It explained a basic model of computation over the reals due to Blum, Michael Shub and Steve Smale (1989), subsequently exposited at length in their influential book, Complexity and Real Computation (1997), coauthored with Felipe Cucker. The ‘Turing’ in the title of Blum’s article refers of course (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A computable ordinary differential equation which possesses no computable solution.Marian Boylan Pour-el - 1979 - Annals of Mathematical Logic 17 (1):61.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Point-free topological spaces, functions and recursive points; filter foundation for recursive analysis. I.Iraj Kalantari & Lawrence Welch - 1998 - Annals of Pure and Applied Logic 93 (1-3):125-151.
    In this paper we develop a point-free approach to the study of topological spaces and functions on them, establish platforms for both and present some findings on recursive points. In the first sections of the paper, we obtain conditions under which our approach leads to the generation of ideal objects with which mathematicians work. Next, we apply the effective version of our approach to the real numbers, and make exact connections to the classical approach to recursive reals. In the succeeding (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The elementary computable functions over the real numbers: applying two new techniques. [REVIEW]Manuel L. Campagnolo & Kerry Ojakian - 2008 - Archive for Mathematical Logic 46 (7-8):593-627.
    The basic motivation behind this work is to tie together various computational complexity classes, whether over different domains such as the naturals or the reals, or whether defined in different manners, via function algebras (Real Recursive Functions) or via Turing Machines (Computable Analysis). We provide general tools for investigating these issues, using two techniques we call approximation and lifting. We use these methods to obtain two main theorems. First, we provide an alternative proof of the result from Campagnolo et al. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Real Number Structure that is Effectively Categorical.Peter Hertling - 1999 - Mathematical Logic Quarterly 45 (2):147-182.
    On countable structures computability is usually introduced via numberings. For uncountable structures whose cardinality does not exceed the cardinality of the continuum the same can be done via representations. Which representations are appropriate for doing real number computations? We show that with respect to computable equivalence there is one and only one equivalence class of representations of the real numbers which make the basic operations and the infinitary normed limit operator computable. This characterizes the real numbers in terms of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations