Switch to: References

Add citations

You must login to add citations.
  1. Thicket density.Siddharth Bhaskar - 2021 - Journal of Symbolic Logic 86 (1):110-127.
    We define a new type of “shatter function” for set systems that satisfies a Sauer–Shelah type dichotomy, but whose polynomial-growth case is governed by Shelah’s two-rank instead of VC dimension. We identify the least exponent bounding the rate of growth of the shatter function, the quantity analogous to VC density, with Shelah’s $\omega $ -rank.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ranks based on strong amalgamation Fraïssé classes.Vincent Guingona & Miriam Parnes - 2023 - Archive for Mathematical Logic 62 (7):889-929.
    In this paper, we introduce the notion of $${\textbf{K}} $$ -rank, where $${\textbf{K}} $$ is a strong amalgamation Fraïssé class. Roughly speaking, the $${\textbf{K}} $$ -rank of a partial type is the number “copies” of $${\textbf{K}} $$ that can be “independently coded” inside of the type. We study $${\textbf{K}} $$ -rank for specific examples of $${\textbf{K}} $$, including linear orders, equivalence relations, and graphs. We discuss the relationship of $${\textbf{K}} $$ -rank to other ranks in model theory, including dp-rank and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model theory and combinatorics of banned sequences.Hunter Chase & James Freitag - 2022 - Journal of Symbolic Logic 87 (1):1-20.
    We set up a general context in which one can prove Sauer-Shelah type lemmas. We apply our general results to answer a question of Bhaskar [1] and give a slight improvement to a result of Malliaris and Terry [7]. We also prove a new Sauer-Shelah type lemma in the context of op-rank, a notion of Guingona and Hill [4].
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizing model-theoretic dividing lines via collapse of generalized indiscernibles.Vincent Guingona, Cameron Donnay Hill & Lynn Scow - 2017 - Annals of Pure and Applied Logic 168 (5):1091-1111.
    Download  
     
    Export citation  
     
    Bookmark   6 citations