Switch to: References

Add citations

You must login to add citations.
  1. Characterizing common cause closedness of quantum probability theories.Yuichiro Kitajima & Miklós Rédei - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (B):234-241.
    We prove new results on common cause closedness of quantum probability spaces, where by a quantum probability space is meant the projection lattice of a non-commutative von Neumann algebra together with a countably additive probability measure on the lattice. Common cause closedness is the feature that for every correlation between a pair of commuting projections there exists in the lattice a third projection commuting with both of the correlated projections and which is a Reichenbachian common cause of the correlation. The (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In Thomas Uebel (ed.), New Directions in the Philosophy of Science. Cham: Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Completion of the Causal Completability Problem.Michał Marczyk & Leszek Wroński - 2015 - British Journal for the Philosophy of Science 66 (2):307-326.
    We give a few results concerning the notions of causal completability and causal closedness of classical probability spaces . We prove that any classical probability space has a causally closed extension; any finite classical probability space with positive rational probabilities on the atoms of the event algebra can be extended to a causally up-to-three-closed finite space; and any classical probability space can be extended to a space in which all correlations between events that are logically independent modulo measure zero event (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Common cause completability of non-classical probability spaces.Zalán Gyenis & Miklós Rédei - 2016 - Belgrade Philosophical Annual 29 (29).
    We prove that under some technical assumptions on a general, non-classical probability space, the probability space is extendible into a larger probability space that is common cause closed in the sense of containing a common cause of every correlation between elements in the space. It is argued that the philosophical significance of this common cause completability result is that it allows the defence of the Common Cause Principle against certain attempts of falsification. Some open problems concerning possible strengthening of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Atomicity and Causal Completeness.Zalán Gyenis & Miklós Rédei - 2014 - Erkenntnis 79 (3):1-15.
    The role of measure theoretic atomicity in common cause closedness of general probability theories with non-distributive event structures is raised and investigated. It is shown that if a general probability space is non-atomic then it is common cause closed. Conditions are found that entail that a general probability space containing two atoms is not common cause closed but it is common cause closed if it contains only one atom. The results are discussed from the perspective of the Common Cause Principle.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Measure theoretic analysis of consistency of the Principal Principle.Miklós Rédei & Zalán Gyenis - 2016 - Philosophy of Science 83 (5):972-987.
    Weak and strong consistency of the Abstract Principal Principle are defined in terms of classical probability measure spaces. It is proved that the Abstract Principal Principle is both weakly and strongly consistent. The Abstract Principal Principle is strengthened by adding a stability requirement to it. Weak and strong consistency of the resulting Stable Abstract Principal Principle are defined. It is shown that the Stable Abstract Principal Principle is weakly consistent. Strong consistency of the Stable Abstract Principal principle remains an open (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A New Notion of Causal Closedness.Leszek Wroński & Michał Marczyk - 2014 - Erkenntnis 79 (S3):1-26.
    In recent years part of the literature on probabilistic causality concerned notions stemming from Reichenbach’s idea of explaining correlations between not directly causally related events by referring to their common causes. A few related notions have been introduced, e.g. that of a “common cause system” (Hofer-Szabó and Rédei in Int J Theor Phys 43(7/8):1819–1826, 2004) and “causal (N-)closedness” of probability spaces (Gyenis and Rédei in Found Phys 34(9):1284–1303, 2004; Hofer-Szabó and Rédei in Found Phys 36(5):745–756, 2006). In this paper we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Maxim of Probabilism, with special regard to Reichenbach.Miklós Rédei & Zalán Gyenis - 2021 - Synthese 199 (3-4):8857-8874.
    It is shown that by realizing the isomorphism features of the frequency and geometric interpretations of probability, Reichenbach comes very close to the idea of identifying mathematical probability theory with measure theory in his 1949 work on foundations of probability. Some general features of Reichenbach’s axiomatization of probability theory are pointed out as likely obstacles that prevented him making this conceptual move. The role of isomorphisms of Kolmogorovian probability measure spaces is specified in what we call the “Maxim of Probabilism”, (...)
    Download  
     
    Export citation  
     
    Bookmark