Switch to: References

Add citations

You must login to add citations.
  1. Bertrand's Paradox and the Maximum Entropy Principle.Nicholas Shackel & Darrell P. Rowbottom - 2019 - Philosophy and Phenomenological Research 101 (3):505-523.
    An important suggestion of objective Bayesians is that the maximum entropy principle can replace a principle which is known to get into paradoxical difficulties: the principle of indifference. No one has previously determined whether the maximum entropy principle is better able to solve Bertrand’s chord paradox than the principle of indifference. In this paper I show that it is not. Additionally, the course of the analysis brings to light a new paradox, a revenge paradox of the chords, that is unique (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conditioning using conditional expectations: the Borel–Kolmogorov Paradox.Zalán Gyenis, Gabor Hofer-Szabo & Miklós Rédei - 2016 - Synthese 194 (7):2595-2630.
    The Borel–Kolmogorov Paradox is typically taken to highlight a tension between our intuition that certain conditional probabilities with respect to probability zero conditioning events are well defined and the mathematical definition of conditional probability by Bayes’ formula, which loses its meaning when the conditioning event has probability zero. We argue in this paper that the theory of conditional expectations is the proper mathematical device to conditionalize and that this theory allows conditionalization with respect to probability zero events. The conditional probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Bertrand’s Paradox and the Principle of Indifference.Nicholas Shackel - 2023 - Abingdon: Routledge.
    Events between which we have no epistemic reason to discriminate have equal epistemic probabilities. Bertrand’s chord paradox, however, appears to show this to be false, and thereby poses a general threat to probabilities for continuum sized state spaces. Articulating the nature of such spaces involves some deep mathematics and that is perhaps why the recent literature on Bertrand’s Paradox has been almost entirely from mathematicians and physicists, who have often deployed elegant mathematics of considerable sophistication. At the same time, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Study of Mathematical Determination through Bertrand’s Paradox.Davide Rizza - 2018 - Philosophia Mathematica 26 (3):375-395.
    Certain mathematical problems prove very hard to solve because some of their intuitive features have not been assimilated or cannot be assimilated by the available mathematical resources. This state of affairs triggers an interesting dynamic whereby the introduction of novel conceptual resources converts the intuitive features into further mathematical determinations in light of which a solution to the original problem is made accessible. I illustrate this phenomenon through a study of Bertrand’s paradox.
    Download  
     
    Export citation  
     
    Bookmark   3 citations