Switch to: References

Citations of:

Beyond unification

In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 151--178 (2008)

Add citations

You must login to add citations.
  1. Mathematics Dealing with 'Hypothetical States of Things'.Jessica Carter - 2014 - Philosophia Mathematica 22 (2):209-230.
    This paper takes as a starting point certain notions from Peirce's writings and uses them to propose a picture of the part of mathematical practice that consists of hypothesis formation. In particular, three processes of hypothesis formation are considered: abstraction, generalisation, and an abductive-like inference. In addition Peirce's pragmatic conception of truth and existence in terms of higher-order concepts are used in order to obtain a kind of pragmatic realist picture of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Counterpossibles.Barak Krakauer - 2012 - Dissertation, University of Massachusetts
    Counterpossibles are counterfactuals with necessarily false antecedents. The problem of counterpossibles is easiest to state within the "nearest possible world" framework for counterfactuals: on this approach, a counterfactual is true (roughly) when the consequent is true in the "nearest" possible world where the antecedent is true. Since counterpossibles have necessarily false antecedents, there is no possible world where the antecedent is true. On the approach favored by Lewis, Stalnaker, Williamson, and others, counterpossibles are all trivially true. I introduce several arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Counter Countermathematical Explanations.Atoosa Kasirzadeh - 2021 - Erkenntnis 88 (6):2537-2560.
    Recently, there have been several attempts to generalize the counterfactual theory of causal explanations to mathematical explanations. The central idea of these attempts is to use conditionals whose antecedents express a mathematical impossibility. Such countermathematical conditionals are plugged into the explanatory scheme of the counterfactual theory and—so is the hope—capture mathematical explanations. Here, I dash the hope that countermathematical explanations simply parallel counterfactual explanations. In particular, I show that explanations based on countermathematicals are susceptible to three problems counterfactual explanations do (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Proofs of the Compactness Theorem.Alexander Paseau - 2010 - History and Philosophy of Logic 31 (1):73-98.
    In this study, several proofs of the compactness theorem for propositional logic with countably many atomic sentences are compared. Thereby some steps are taken towards a systematic philosophical study of the compactness theorem. In addition, some related data and morals for the theory of mathematical explanation are presented.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Do mathematical explanations have instrumental value?Rebecca Lea Morris - 2019 - Synthese (2):1-20.
    Scientific explanations are widely recognized to have instrumental value by helping scientists make predictions and control their environment. In this paper I raise, and provide a first analysis of, the question whether explanatory proofs in mathematics have analogous instrumental value. I first identify an important goal in mathematical practice: reusing resources from existing proofs to solve new problems. I then consider the more specific question: do explanatory proofs have instrumental value by promoting reuse of the resources they contain? In general, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Volterra Principle Generalized.Tim Räz - 2017 - Philosophy of Science 84 (4):737-760.
    Michael Weisberg and Kenneth Reisman argue that the Volterra Principle can be derived from multiple predator-prey models and that, therefore, the Volterra Principle is a prime example for robustness analysis. In the current article, I give new results regarding the Volterra Principle, extending Weisberg’s and Reisman’s work, and I discuss the consequences of these results for robustness analysis. I argue that we do not end up with multiple, independent models but rather with one general model. I identify the kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Argument and explanation in mathematics.Michel Dufour - 2013 - In Dima Mohammed and Marcin Lewiński (ed.), Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 22-26 May 2013. pp. pp. 1-14..
    Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Functional explanation in mathematics.Matthew Inglis & Juan Pablo Mejía Ramos - 2019 - Synthese 198 (26):6369-6392.
    Mathematical explanations are poorly understood. Although mathematicians seem to regularly suggest that some proofs are explanatory whereas others are not, none of the philosophical accounts of what such claims mean has become widely accepted. In this paper we explore Wilkenfeld’s suggestion that explanations are those sorts of things that generate understanding. By considering a basic model of human cognitive architecture, we suggest that existing accounts of mathematical explanation are all derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We therefore argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Deductive Nomological Model and Mathematics: Making Dissatisfaction more Satisfactory.Daniele Molinini - 2014 - Theoria 29 (2):223-241.
    The discussion on mathematical explanation has inherited the same sense of dissatisfaction that philosophers of science expressed, in the context of scientific explanation, towards the deductive-nomological model. This model is regarded as unable to cover cases of bona fide mathematical explanations and, furthermore, it is largely ignored in the relevant literature. Surprisingly, the reasons for this ostracism are not sufficiently manifest. In this paper I explore a possible extension of the model to the case of mathematical explanations and I claim (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indispensability and explanation: an overview and introduction.Daniele Molinini, Fabrice Pataut & Andrea Sereni - 2016 - Synthese 193 (2):317-332.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the Role of Mathematics in Scientific Representation.Saad Anis - unknown
    In this dissertation, I consider from a philosophical perspective three related questions concerning the contribution of mathematics to scientific representation. In answering these questions, I propose and defend Carnapian frameworks for examination into the nature and role of mathematics in science. The first research question concerns the varied ways in which mathematics contributes to scientific representation. In response, I consider in Chapter 2 two recent philosophical proposals claiming to account for the explanatory role of mathematics in science, by Philip Kitcher, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.
    Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: (...)
    Download  
     
    Export citation  
     
    Bookmark