Switch to: References

Add citations

You must login to add citations.
  1. A marriage of Brouwer’s intuitionism and Hilbert’s finitism I: Arithmetic.Takako Nemoto & Sato Kentaro - 2022 - Journal of Symbolic Logic 87 (2):437-497.
    We investigate which part of Brouwer’s Intuitionistic Mathematics is finitistically justifiable or guaranteed in Hilbert’s Finitism, in the same way as similar investigations on Classical Mathematics (i.e., which part is equiconsistent with$\textbf {PRA}$or consistent provably in$\textbf {PRA}$) already done quite extensively in proof theory and reverse mathematics. While we already knew a contrast from the classical situation concerning the continuity principle, more contrasts turn out: we show that several principles are finitistically justifiable or guaranteed which are classically not. Among them (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The binary expansion and the intermediate value theorem in constructive reverse mathematics.Josef Berger, Hajime Ishihara, Takayuki Kihara & Takako Nemoto - 2019 - Archive for Mathematical Logic 58 (1-2):203-217.
    We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval ) is equivalent to weak König lemma ) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to \ for convex trees, in the framework of constructive reverse mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Aligning the weak König lemma, the uniform continuity theorem, and Brouwer’s fan theorem.Josef Berger - 2012 - Annals of Pure and Applied Logic 163 (8):981-985.
    Download  
     
    Export citation  
     
    Bookmark  
  • Classifying Dini's Theorem.Josef Berger & Peter Schuster - 2006 - Notre Dame Journal of Formal Logic 47 (2):253-262.
    Dini's theorem says that compactness of the domain, a metric space, ensures the uniform convergence of every simply convergent monotone sequence of real-valued continuous functions whose limit is continuous. By showing that Dini's theorem is equivalent to Brouwer's fan theorem for detachable bars, we provide Dini's theorem with a classification in the recently established constructive reverse mathematics propagated by Ishihara. As a complement, Dini's theorem is proved to be equivalent to the analogue of the fan theorem, weak König's lemma, in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Fan Theorem, its strong negation, and the determinacy of games.Wim Veldman - forthcoming - Archive for Mathematical Logic:1-66.
    In the context of a weak formal theory called Basic Intuitionistic Mathematics $$\textsf{BIM}$$ BIM, we study Brouwer’s Fan Theorem and a strong negation of the Fan Theorem, Kleene’s Alternative (to the Fan Theorem). We prove that the Fan Theorem is equivalent to contrapositions of a number of intuitionistically accepted axioms of countable choice and that Kleene’s Alternative is equivalent to strong negations of these statements. We discuss finite and infinite games and introduce a constructively useful notion of determinacy. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The weak König lemma and uniform continuity.Josef Berger - 2008 - Journal of Symbolic Logic 73 (3):933-939.
    We prove constructively that the weak König lemma and quantifier-free number-number choice imply that every pointwise continuous function from Cantor space into Baire space has a modulus of uniform continuity.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A separating hyperplane theorem, the fundamental theorem of asset pricing, and Markov's principle.Josef Berger & Gregor Svindland - 2016 - Annals of Pure and Applied Logic 167 (11):1161-1170.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Unique solutions.Peter Schuster - 2006 - Mathematical Logic Quarterly 52 (6):534-539.
    It is folklore that if a continuous function on a complete metric space has approximate roots and in a uniform manner at most one root, then it actually has a root, which of course is uniquely determined. Also in Bishop's constructive mathematics with countable choice, the general setting of the present note, there is a simple method to validate this heuristic principle. The unique solution even becomes a continuous function in the parameters by a mild modification of the uniqueness hypothesis. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Coding of real‐valued continuous functions under WKL$\mathsf {WKL}$.Tatsuji Kawai - 2023 - Mathematical Logic Quarterly 69 (3):370-391.
    In the context of constructive reverse mathematics, we show that weak Kőnig's lemma () implies that every pointwise continuous function is induced by a code in the sense of reverse mathematics. This, combined with the fact that implies the Fan theorem, shows that implies the uniform continuity theorem: every pointwise continuous function has a modulus of uniform continuity. Our results are obtained in Heyting arithmetic in all finite types with quantifier‐free axiom of choice.
    Download  
     
    Export citation  
     
    Bookmark  
  • König's lemma, weak König's lemma, and the decidable fan theorem.Makoto Fujiwara - 2021 - Mathematical Logic Quarterly 67 (2):241-257.
    We provide a fine‐grained analysis on the relation between König's lemma, weak König's lemma, and the decidable fan theorem in the context of constructive reverse mathematics. In particular, we show that double negated variants of König's lemma and weak König's lemma are equivalent to double negated variants of the general decidable fan theorem and the binary decidable fan theorem, respectively, over a nearly intuitionistic system containing a weak countable choice only. This implies that the general decidable fan theorem is not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two direct proofs that LLPO implies the detachable fan theorem.D. S. Bridges, J. E. Dent & M. N. McKubre-Jordens - 2013 - Logic Journal of the IGPL 21 (5):830-835.
    Download  
     
    Export citation  
     
    Bookmark