Switch to: References

Add citations

You must login to add citations.
  1. Quantum Mechanics is About Quantum Information.Jeffrey Bub - 2005 - Foundations of Physics 35 (4):541-560.
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Schwinger and the ontology of quantum field theory.Edward MacKinnon - 2007 - Foundations of Science 12 (4):295-323.
    An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum reaxiomatisations and information-theoretic interpretations of quantum theory.Leah Henderson - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:292-300.
    Jeff Bub has developed an information-theoretic interpretation of quantum mechanics on the basis of the programme to reaxiomatise the theory in terms of information-theoretic principles. According to the most recent version of the interpretation, reaxiomatisation can dissolve some of the demands for explanation traditionally associated with the task of providing an interpretation for the theory. The key idea is that the real lesson we should take away from quantum mechanics is that the ‘structure of in- formation’ is not what we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why the quantum?Jeffrey Bub - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):241-266.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Intrinsically mixed states: an appreciation.Laura Ruetsche - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):221-239.
    An “intrinsically mixed” state is a mixed state of a system that is ‘orthogonal’ to every pure state of that system. Although the presence of such states in the quantum theories of infinite systems is well known to those who work with such theories, intrinsically mixed states are virtually unheralded in the philosophical literature. Rob Clifton was thoroughly familiar with intrinsically mixed states. I aim here to introduce them to a wider audience—and to encourage that audience to cultivate their acquaintance (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Interpreting quantum nonlocality as platonic information.James C. Emerson - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Formalism and Interpretation in Quantum Theory.Alexander Wilce - 2010 - Foundations of Physics 40 (4):434-462.
    Quantum Mechanics can be viewed as a linear dynamical theory having a familiar mathematical framework but a mysterious probabilistic interpretation, or as a probabilistic theory having a familiar interpretation but a mysterious formal framework. These points of view are usually taken to be somewhat in tension with one another. The first has generated a vast literature aiming at a “realistic” and “collapse-free” interpretation of quantum mechanics that will account for its statistical predictions. The second has generated an at least equally (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generating ontology: From quantum mechanics to quantum field theory.Edward MacKinnon - manuscript
    Philosophical interpretations of theories generally presuppose that a theory can be presented as a consistent mathematical formulation that is interpreted through models. Algebraic quantum field theory (AQFT) can fit this interpretative model. However, standard Lagrangian quantum field theory (LQFT), as well as quantum electrodynamics and nuclear physics, resists recasting along such formal lines. The difference has a distinct bearing on ontological issues. AQFT does not treat particle interactions or the standard model. This paper develops a framework and methodology for interpreting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Re-conceiving quantum theories in terms of information-theoretic constraints.Armond Duwell - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):181-201.
    Download  
     
    Export citation  
     
    Bookmark   6 citations