Switch to: References

Add citations

You must login to add citations.
  1. Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Einstein Completeness as Categoricity.Iulian D. Toader - 2023 - Foundations of Physics 53 (2):1-15.
    This paper provides an algebraic reconstruction of Einstein’s argument for the incompleteness of quantum mechanics, in order to clarify the assumptions that underlie an understanding of Einstein completeness as categoricity.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Review of Jeffrey A. Barrett’s The Conceptual Foundations of Quantum Mechanics - Jeffrey A. Barrett, The Conceptual Foundations of Quantum Mechanics. Oxford: Oxford University Press (2020), 272 pp., $88.00. [REVIEW]Benjamin H. Feintzeig - 2022 - Philosophy of Science 89 (1):202-205.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Arrangements.Gregg Jaeger & Anton Zeilinger - 2021 - Cham, Switzerland: Springer Nature.
    This book presents a collection of novel contributions and reviews by renowned researchers in the foundations of quantum physics, quantum optics, and neutron physics. It is published in honor of Michael Horne, whose exceptionally clear and groundbreaking work in the foundations of quantum mechanics and interferometry, both of photons and of neutrons, has provided penetrating insight into the implications of modern physics for our understanding of the physical world. He is perhaps best known for the Clauser-Horne-Shimony-Holt (CHSH) inequality. This collection (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Theory Construction in Physics: Continuity from Classical to Quantum.Benjamin H. Feintzeig - 2017 - Erkenntnis 82 (6):1195-1210.
    It is well known that the process of quantization—constructing a quantum theory out of a classical theory—is not in general a uniquely determined procedure. There are many inequivalent methods that lead to different choices for what to use as our quantum theory. In this paper, I show that by requiring a condition of continuity between classical and quantum physics, we constrain and inform the quantum theories that we end up with.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Why be regular? Part II.Benjamin Feintzeig & James Owen Weatherall - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):133-144.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The classical limit of a state on the Weyl algebra.Benjamin H. Feintzeig - unknown
    This paper considers states on the Weyl algebra of the canonical commutation relations over the phase space R^{2n}. We show that a state is regular iff its classical limit is a countably additive Borel probability measure on R^{2n}. It follows that one can "reduce" the state space of the Weyl algebra by altering the collection of quantum mechanical observables so that all states are ones whose classical limit is physical.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Choice of Algebra for Quantization.Benjamin H. Feintzeig - 2018 - Philosophy of Science 85 (1):102-125.
    In this article, I examine the relationship between physical quantities and physical states in quantum theories. I argue against the claim made by Arageorgis that the approach to interpreting quantum theories known as Algebraic Imperialism allows for “too many states.” I prove a result establishing that the Algebraic Imperialist has very general resources that she can employ to change her abstract algebra of quantities in order to rule out unphysical states.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Philosophical Aspects of Quantum Field Theory: I.Laura Ruetsche - 2012 - Philosophy Compass 7 (8):559-570.
    This is the first of a two-part introduction to some interpretive questions that arise in connection with quantum field theories (QFTs). Some of these questions are continuous with those familiar from the discussion of ordinary non-relativistic quantum mechanics (QM). For example, questions about locality can be rigorously posed and fruitfully pursued within the framework of QFT. A stark disanalogy between QFTs and ordinary QM – the former, but not the latter, typically admit infinitely many putatively physically inequivalent realizations – prompts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Intrinsically mixed states: an appreciation.Laura Ruetsche - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):221-239.
    An “intrinsically mixed” state is a mixed state of a system that is ‘orthogonal’ to every pure state of that system. Although the presence of such states in the quantum theories of infinite systems is well known to those who work with such theories, intrinsically mixed states are virtually unheralded in the philosophical literature. Rob Clifton was thoroughly familiar with intrinsically mixed states. I aim here to introduce them to a wider audience—and to encourage that audience to cultivate their acquaintance (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Copenhagen interpretation of quantum mechanics.Jan Faye - 2008 - Stanford Encyclopedia of Philosophy.
    As the theory of the atom, quantum mechanics is perhaps the most successful theory in the history of science. It enables physicists, chemists, and technicians to calculate and predict the outcome of a vast number of experiments and to create new and advanced technology based on the insight into the behavior of atomic objects. But it is also a theory that challenges our imagination. It seems to violate some fundamental principles of classical physics, principles that eventually have become a part (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Is measurement a Black box? On the importance of understanding measurement even in quantum information and computation.Michael Dickson - 2007 - Philosophy of Science 74 (5):1019–1032.
    It has been argued, partly from the lack of any widely accepted solution to the measurement problem, and partly from recent results from quantum information theory, that measurement in quantum theory is best treated as a black box. However, there is a crucial difference between ‘having no account of measurement' and ‘having no solution to the measurement problem'. We know a lot about measurements. Taking into account this knowledge sheds light on quantum theory as a theory of information and computation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Be regular?, part I.Benjamin Feintzeig, J. B. Le Manchak, Sarita Rosenstock & James Owen Weatherall - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):122-132.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantisation as a method of generation: The nature and prospects of theory changes through quantisation.Niels Linnemann - 2022 - Studies in History and Philosophy of Science Part A 92 (C):209-223.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is quantum mechanics pointless?Frank Arntzenius - 2003 - Philosophy of Science 70 (5):1447-1457.
    There exist well‐known conundrums, such as measure‐theoretic paradoxes and problems of contact, which, within the context of classical physics, can be used to argue against the existence of points in space and space‐time. I examine whether quantum mechanics provides additional reasons for supposing that there are no points in space and space‐time.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complementarity Revisited.Towfic Shomar - 2020 - Foundations of Science 25 (2):401-424.
    Complementarity can be considered as the weirdest idea associated with quantum mechanics. For Bohr, Complementarity is important in order to be able to convey successfully the non-classical features of quantum mechanics. This paper discusses the epistemic and ontological implications of different new experiments that attempt to detect complementarity. Complementarity has surely survived the attempts to overcome it, yet some of these experiments have led to a more general form of complementarity. Others claim to be able to differentiate among the different (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation