Switch to: References

Add citations

You must login to add citations.
  1. Full-splitting Miller trees and infinitely often equal reals.Yurii Khomskii & Giorgio Laguzzi - 2017 - Annals of Pure and Applied Logic 168 (8):1491-1506.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Social welfare relations and irregular sets.Ram Sewak Dubey & Giorgio Laguzzi - 2023 - Annals of Pure and Applied Logic 174 (9):103302.
    Download  
     
    Export citation  
     
    Bookmark  
  • Cichoń’s diagram, regularity properties and $${\varvec{\Delta}^1_3}$$ Δ 3 1 sets of reals.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2014 - Archive for Mathematical Logic 53 (5-6):695-729.
    We study regularity properties related to Cohen, random, Laver, Miller and Sacks forcing, for sets of real numbers on the Δ31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_3}$$\end{document} level of the projective hieararchy. For Δ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_2}$$\end{document} and Σ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Sigma}^1_2}$$\end{document} sets, the relationships between these properties follows the pattern of the well-known Cichoń diagram for cardinal characteristics of the continuum. It is known that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Special subsets of the generalized Cantor space and generalized Baire space.Michał Korch & Tomasz Weiss - 2020 - Mathematical Logic Quarterly 66 (4):418-437.
    In this paper, we are interested in parallels to the classical notions of special subsets in defined in the generalized Cantor and Baire spaces (2κ and ). We consider generalizations of the well‐known classes of special subsets, like Lusin sets, strongly null sets, concentrated sets, perfectly meagre sets, σ‐sets, γ‐sets, sets with the Menger, the Rothberger, or the Hurewicz property, but also of some less‐know classes like X‐small sets, meagre additive sets, Ramsey null sets, Marczewski, Silver, Miller, and Laver‐null sets. (...)
    Download  
     
    Export citation  
     
    Bookmark