Switch to: References

Add citations

You must login to add citations.
  1. The Relation Between Two Diminished Choice Principles.Salome Schumacher - 2021 - Journal of Symbolic Logic 86 (1):415-432.
    For every$n\in \omega \setminus \{0,1\}$we introduce the following weak choice principle:$\operatorname {nC}_{<\aleph _0}^-:$For every infinite family$\mathcal {F}$of finite sets of size at least n there is an infinite subfamily$\mathcal {G}\subseteq \mathcal {F}$with a selection function$f:\mathcal {G}\to \left [\bigcup \mathcal {G}\right ]^n$such that$f(F)\in [F]^n$for all$F\in \mathcal {G}$.Moreover, we consider the following choice principle:$\operatorname {KWF}^-:$For every infinite family$\mathcal {F}$of finite sets of size at least$2$there is an infinite subfamily$\mathcal {G}\subseteq \mathcal {F}$with a Kinna–Wagner selection function. That is, there is a function$g\colon \mathcal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some implications of Ramsey Choice for families of $$\varvec{n}$$ -element sets.Lorenz Halbeisen & Salome Schumacher - 2023 - Archive for Mathematical Logic 62 (5):703-733.
    For \(n\in \omega \), the weak choice principle \(\textrm{RC}_n\) is defined as follows: _For every infinite set_ _X_ _there is an infinite subset_ \(Y\subseteq X\) _with a choice function on_ \([Y]^n:=\{z\subseteq Y:|z|=n\}\). The choice principle \(\textrm{C}_n^-\) states the following: _For every infinite family of_ _n_-_element sets, there is an infinite subfamily_ \({\mathcal {G}}\subseteq {\mathcal {F}}\) _with a choice function._ The choice principles \(\textrm{LOC}_n^-\) and \(\textrm{WOC}_n^-\) are the same as \(\textrm{C}_n^-\), but we assume that the family \({\mathcal {F}}\) is linearly orderable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation