Switch to: References

Add citations

You must login to add citations.
  1. Linearity and Reflexivity in the Growth of Mathematical Knowledge.Leo Corry - 1989 - Science in Context 3 (2):409-440.
    The ArgumentRecent studies in the philosophy of mathematics have increasingly stressed the social and historical dimensions of mathematical practice. Although this new emphasis has fathered interesting new perspectives, it has also blurred the distinction between mathematics and other scientific fields. This distinction can be clarified by examining the special interaction of thebodyandimagesof mathematics.Mathematics has an objective, ever-expanding hard core, the growth of which is conditioned by socially and historically determined images of mathematics. Mathematics also has reflexive capacities unlike those of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Testing the philosophy of mathematics in the history of mathematics.Eduard Glas - 1989 - Studies in History and Philosophy of Science Part A 20 (1):115-131.
    Recent philosophical accounts of mathematics increasingly focus on the quasi-Empirical rather than the formal aspects of the field, The praxis of how mathematics is done rather than the idealized logical structure and foundations of the theory. The ultimate test of any philosophy of mathematics, However idealized, Is its ability to account adequately for the factual development of the subject in real time. As a text case, The works and views of felix klein (1849-1925) were studied. Major advances in mathematics turn (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)Scientific progress.Ilkka Niiniluoto - 1980 - Synthese 45 (3):427 - 462.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • (2 other versions)Mathematical progress: Between reason and society. [REVIEW]Eduard Glas - 1993 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 24 (2):235-256.
    It is shown how the historiographic purport of Lakatosian methodology of mathematics is structured on the theme of analysis and synthesis. This theme is explored and extended to the revolutionary phase around 1800. On the basis of this historical investigation it is argued that major innovations, crucial to the appraisal of mathematical progress, defy reconstruction as irreducibly rational processes and should instead essentially be understood as processes of social-cognitive interaction. A model of conceptual change is developed whose essential ingredients are (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Lakatosian and Euclidean populations: a pluralist approach to conceptual change in mathematics.Matteo De Benedetto - 2023 - European Journal for Philosophy of Science 13 (3):1-25.
    Lakatos’ (Lakatos, 1976) model of mathematical conceptual change has been criticized for neglecting the diversity of dynamics exhibited by mathematical concepts. In this work, I will propose a pluralist approach to mathematical change that re-conceptualizes Lakatos’ model of proofs and refutations as an ideal dynamic that mathematical concepts can exhibit to different degrees with respect to multiple dimensions. Drawing inspiration from Godfrey-Smith’s (Godfrey-Smith, 2009) population-based Darwinism, my proposal will be structured around the notion of a conceptual population, the opposition between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The 'Popperian Programme' and mathematics.Eduard Glas - 2001 - Studies in History and Philosophy of Science Part A 32 (1):119-137.
    Lakatos's Proofs and Refutations is usually understood as an attempt to apply Popper's methodology of science to mathematics. This view has been challenged because despite appearances the methodology expounded in it deviates considerably from what would have been a straightforward application of Popperian maxims. I take a closer look at the Popperian roots of Lakatos's philosophy of mathematics, considered not as an application but as an extension of Popper's critical programme, and focus especially on the core ideas of this programme (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kuhn, Lakatos, and the image of mathematics.Eduard Glas - 1995 - Philosophia Mathematica 3 (3):225-247.
    In this paper I explore possibilities of bringing post-positivist philosophies of empirical science to bear on the dynamics of mathematical development. This is done by way of a convergent accommodation of a mathematical version of Lakatos's methodology of research programmes, and a version of Kuhn's account of scientific change that is made applicable to mathematics by cleansing it of all references to the psychology of perception. The resulting view is argued in the light of two case histories of radical conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Beyond the methodology of mathematics research programmes.Corfield David - 1998 - Philosophia Mathematica 6 (3):272-301.
    In this paper I assess the obstacles to a transfer of Lakatos's methodology of scientific research programmes to mathematics. I argue that, if we are to use something akin to this methodology to discuss modern mathematics with its interweaving theoretical development, we shall require a more intricate construction and we shall have to move still further away from seeing mathematical knowledge as a collection of statements. I also examine the notion of rivalry within mathematics and claim that this appears to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Degeneration and Entropy.Eugene Y. S. Chua - 2022 - Kriterion - Journal of Philosophy 36 (2):123-155.
    [Accepted for publication in Lakatos's Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, special issue of Kriterion: Journal of Philosophy. Edited by S. Nagler, H. Pilin, and D. Sarikaya.] Lakatos’s analysis of progress and degeneration in the Methodology of Scientific Research Programmes is well-known. Less known, however, are his thoughts on degeneration in Proofs and Refutations. I propose and motivate two new criteria for degeneration based on the discussion in Proofs and Refutations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The ‘Popperian Programme’ and mathematics.Eduard Glas - 2001 - Studies in History and Philosophy of Science Part A 32 (2):355-376.
    In the first part of this article I investigated the Popperian roots of Lakatos's Proofs and Refutations, which was an attempt to apply, and thereby to test, Popper's theory of knowledge in a field—mathematics—to which it had not primarily been intended to apply. While Popper's theory of knowledge stood up gloriously to this test, the new application gave rise to new insights into the heuristic of mathematical development, which necessitated further clarification and improvement of some Popperian methodological maxims. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Assaying lakatos's philosophy of mathematics.David Corfield - 1997 - Studies in History and Philosophy of Science Part A 28 (1):99-121.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (2 other versions)Scientific progress.Ilkka Niiniluoto - 2008 - Synthese.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Mathematics as a quasi-empirical science.Gianluigi Oliveri - 2004 - Foundations of Science 11 (1-2):41-79.
    The present paper aims at showing that there are times when set theoretical knowledge increases in a non-cumulative way. In other words, what we call ‘set theory’ is not one theory which grows by simple addition of a theorem after the other, but a finite sequence of theories T1, ..., Tn in which Ti+1, for 1 ≤ i < n, supersedes Ti. This thesis has a great philosophical significance because it implies that there is a sense in which mathematical theories, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Lakatos as historian of mathematics.Brendan P. Larvor - 1997 - Philosophia Mathematica 5 (1):42-64.
    This paper discusses the connection between the actual history of mathematics and Lakatos's philosophy of mathematics, in three parts. The first points to studies by Lakatos and others which support his conception of mathematics and its history. In the second I suggest that the apparent poverty of Lakatosian examples may be due to the way in which the history of mathematics is usually written. The third part argues that Lakatos is right to hold philosophy accountable to history, even if Lakatos's (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Testing the philosophy of mathematics in the history of mathematics.Eduard Glas - 1989 - Studies in History and Philosophy of Science Part A 20 (2):157-174.
    Recent philosophical accounts of mathematics increasingly focus on the quasi-Empirical rather than the formal aspects of the field, The praxis of how mathematics is done rather than the idealized logical structure and foundations of the theory. The ultimate test of any philosophy of mathematics, However idealized, Is its ability to account adequately for the factual development of the subject in real time. As a text case, The works and views of felix klein (1849-1925) were studied. Major advances in mathematics turn (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Arguments on motivation in the rise and decline of a mathematical theory; the?construction of equations?, 1637?ca.1750.H. J. M. Bos - 1984 - Archive for History of Exact Sciences 30 (3-4):331-380.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What can the Philosophy of Mathematics Learn from the History of Mathematics?Brendan Larvor - 2008 - Erkenntnis 68 (3):393-407.
    This article canvasses five senses in which one might introduce an historical element into the philosophy of mathematics: 1. The temporal dimension of logic; 2. Explanatory Appeal to Context rather than to General Principles; 3. Heraclitean Flux; 4. All history is the History of Thought; and 5. History is Non-Judgmental. It concludes by adapting Bernard Williams’ distinction between ‘history of philosophy’ and ‘history of ideas’ to argue that the philosophy of mathematics is unavoidably historical, but need not and must not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Donald Gillies. Lakatos and the Historical Approach to Philosophy of Mathematics.Brendan Larvor - 2024 - Philosophia Mathematica 32 (2):258-262.
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Mathematical progress: Between reason and society.Eduard Glas - 1993 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 24 (1):43-62.
    Download  
     
    Export citation  
     
    Bookmark   3 citations