Switch to: References

Add citations

You must login to add citations.
  1. On a variant of Rado’s selection lemma and its equivalence with the Boolean prime ideal theorem.Paul Howard & Eleftherios Tachtsis - 2014 - Archive for Mathematical Logic 53 (7-8):825-833.
    We establish that, in ZF, the statementRLT: Given a setIand a non-empty setF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document}of non-empty elementary closed subsets of 2Isatisfying the fip, ifF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document}has a choice function, then⋂F≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcap\mathcal{F} \ne \emptyset}$$\end{document},which was introduced in Morillon :739–749, 2012), is equivalent to the Boolean Prime Ideal Theorem. The result provides, on one hand, an affirmative answer to Morillon’s corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ON FREE ULTRAFILTERS ON $\omega $ WITH WELL-ORDERABLE BASES IN $\mathsf {ZF}$.Eleftherios Tachtsis - forthcoming - Journal of Symbolic Logic:1-26.
    In $\mathsf {ZF}$ (i.e., Zermelo–Fraenkel set theory minus the axiom of choice ( $\mathsf {AC}$ )), we investigate the open problem of the deductive strength of the principle UFwob(ω): “There exists a free ultrafilter on ω with a well-orderable base”, which was introduced by Herzberg, Kanovei, Katz, and Lyubetsky [(2018), Journal of Symbolic Logic, 83(1), 385–391]. Typical results are: (1) “ $\aleph _{1}\leq 2^{\aleph _{0}}$ ” is strictly weaker than $\mathsf {UF_{wob}}(\omega )$ in $\mathsf {ZF}$. (2) “There exists a free (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the set-theoretic strength of ellis’ theorem and the existence of free idempotent ultrafilters on ω.Eleftherios Tachtsis - 2018 - Journal of Symbolic Logic 83 (2):551-571.
    Download  
     
    Export citation  
     
    Bookmark