Switch to: References

Add citations

You must login to add citations.
  1. Computability of Homogeneous Models.Karen Lange & Robert I. Soare - 2007 - Notre Dame Journal of Formal Logic 48 (1):143-170.
    In the last five years there have been a number of results about the computable content of the prime, saturated, or homogeneous models of a complete decidable theory T in the spirit of Vaught's "Denumerable models of complete theories" combined with computability methods for degrees d ≤ 0′. First we recast older results by Goncharov, Peretyat'kin, and Millar in a more modern framework which we then apply. Then we survey recent results by Lange, "The degree spectra of homogeneous models," which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bounding Prime Models.Barbara F. Csima, Denis R. Hirschfeldt, Julia F. Knight & Robert I. Soare - 2004 - Journal of Symbolic Logic 69 (4):1117 - 1142.
    A set X is prime bounding if for every complete atomic decidable (CAD) theory T there is a prime model U of T decidable in X. It is easy to see that $X = 0\prime$ is prime bounding. Denisov claimed that every $X <_{T} 0\prime$ is not prime bounding, but we discovered this to be incorrect. Here we give the correct characterization that the prime bounding sets $X \leq_{T} 0\prime$ are exactly the sets which are not $low_2$ . Recall that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Spaces of orders and their Turing degree spectra.Malgorzata A. Dabkowska, Mieczyslaw K. Dabkowski, Valentina S. Harizanov & Amir A. Togha - 2010 - Annals of Pure and Applied Logic 161 (9):1134-1143.
    We investigate computability theoretic and topological properties of spaces of orders on computable orderable groups. A left order on a group G is a linear order of the domain of G, which is left-invariant under the group operation. Right orders and bi-orders are defined similarly. In particular, we study groups for which the spaces of left orders are homeomorphic to the Cantor set, and their Turing degree spectra contain certain upper cones of degrees. Our approach unifies and extends Sikora’s [28] (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of isomorphism types and countably categorical groups.Aleksander Ivanov - 2012 - Archive for Mathematical Logic 51 (1):93-98.
    It is shown that for every Turing degree d there is an ω-categorical group G such that the isomorphism type of G is of degree d. We also find an ω-categorical group G such that the isomorphism type of G has no degree.
    Download  
     
    Export citation  
     
    Bookmark