Switch to: References

Add citations

You must login to add citations.
  1. Interpreting a Field in its Heisenberg Group.Rachael Alvir, Wesley Calvert, Grant Goodman, Valentina Harizanov, Julia Knight, Russell Miller, Andrey Morozov, Alexandra Soskova & Rose Weisshaar - 2022 - Journal of Symbolic Logic 87 (3):1215-1230.
    We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by $H(F)$ the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is interpreted in $H(F)$ using computable $\Sigma _1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the effective universality of mereological theories.Nikolay Bazhenov & Hsing-Chien Tsai - 2022 - Mathematical Logic Quarterly 68 (1):48-66.
    Mereological theories are based on the binary relation “being a part of”. The systematic investigations of mereology were initiated by Leśniewski. More recent authors (including Simons, Casati and Varzi, Hovda) formulated a series of first‐order mereological axioms. These axioms give rise to a plenitude of theories, which are of great philosophical interest. The paper considers first‐order mereological theories from the point of view of computable (or effective) algebra. Following the approach of Hirschfeldt, Khoussainov, Shore, and Slinko, we isolate two important (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Degree spectra of real closed fields.Russell Miller & Victor Ocasio González - 2019 - Archive for Mathematical Logic 58 (3-4):387-411.
    Several researchers have recently established that for every Turing degree \, the real closed field of all \-computable real numbers has spectrum \. We investigate the spectra of real closed fields further, focusing first on subfields of the field \ of computable real numbers, then on archimedean real closed fields more generally, and finally on non-archimedean real closed fields. For each noncomputable, computably enumerable set C, we produce a real closed C-computable subfield of \ with no computable copy. Then we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Categorical linearly ordered structures.Rod Downey, Alexander Melnikov & Keng Meng Ng - 2019 - Annals of Pure and Applied Logic 170 (10):1243-1255.
    Download  
     
    Export citation  
     
    Bookmark  
  • Foundations of online structure theory.Nikolay Bazhenov, Rod Downey, Iskander Kalimullin & Alexander Melnikov - 2019 - Bulletin of Symbolic Logic 25 (2):141-181.
    The survey contains a detailed discussion of methods and results in the new emerging area of online “punctual” structure theory. We also state several open problems.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Torsion-free abelian groups with optimal Scott families.Alexander G. Melnikov - 2018 - Journal of Mathematical Logic 18 (1):1850002.
    We prove that for any computable successor ordinal of the form α = δ + 2k there exists computable torsion-free abelian group that is relatively Δα0 -categorical and not Δα−10 -categorical. Equivalently, for any such α there exists a computable TFAG whose initial segments are uniformly described by Σαc infinitary computable formulae up to automorphism, and there is no syntactically simpler family of formulae that would capture these orbits. As far as we know, the problem of finding such optimal examples (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Finitely generated groups are universal among finitely generated structures.Matthew Harrison-Trainor & Meng-Che “Turbo” Ho - 2021 - Annals of Pure and Applied Logic 172 (1):102855.
    Universality has been an important concept in computable structure theory. A class C of structures is universal if, informally, for any structure of any kind there is a structure in C with the same computability-theoretic properties as the given structure. Many classes such as graphs, groups, and fields are known to be universal. This paper is about the class of finitely generated groups. Because finitely generated structures are relatively simple, the class of finitely generated groups has no hope of being (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computable valued fields.Matthew Harrison-Trainor - 2018 - Archive for Mathematical Logic 57 (5-6):473-495.
    We investigate the computability-theoretic properties of valued fields, and in particular algebraically closed valued fields and p-adically closed valued fields. We give an effectiveness condition, related to Hensel’s lemma, on a valued field which is necessary and sufficient to extend the valuation to any algebraic extension. We show that there is a computable formally p-adic field which does not embed into any computable p-adic closure, but we give an effectiveness condition on the divisibility relation in the value group which is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Jump inversions of algebraic structures and Σ‐definability.Marat Faizrahmanov, Asher Kach, Iskander Kalimullin, Antonio Montalbán & Vadim Puzarenko - 2019 - Mathematical Logic Quarterly 65 (1):37-45.
    It is proved that for every countable structure and a computable successor ordinal α there is a countable structure which is ‐least among all countable structures such that is Σ‐definable in the αth jump. We also show that this result does not hold for the limit ordinal. Moreover, we prove that there is no countable structure with the degree spectrum for.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model completeness and relative decidability.Jennifer Chubb, Russell Miller & Reed Solomon - 2021 - Archive for Mathematical Logic 60 (6):721-735.
    We study the implications of model completeness of a theory for the effectiveness of presentations of models of that theory. It is immediate that for a computable model A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of a computably enumerable, model complete theory, the entire elementary diagram E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} must be decidable. We prove that indeed a c.e. theory T is model complete if and only if there is a (...)
    Download  
     
    Export citation  
     
    Bookmark