Switch to: References

Add citations

You must login to add citations.
  1. Computable Abelian groups.Alexander G. Melnikov - 2014 - Bulletin of Symbolic Logic 20 (3):315-356,.
    We provide an introduction to methods and recent results on infinitely generated abelian groups with decidable word problem.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Increasing η ‐representable degrees.Andrey N. Frolov & Maxim V. Zubkov - 2009 - Mathematical Logic Quarterly 55 (6):633-636.
    In this paper we prove that any Δ30 degree has an increasing η -representation. Therefore, there is an increasing η -representable set without a strong η -representation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Automorphisms of η-like computable linear orderings and Kierstead's conjecture.Charles M. Harris, Kyung Il Lee & S. Barry Cooper - 2016 - Mathematical Logic Quarterly 62 (6):481-506.
    We develop an approach to the longstanding conjecture of Kierstead concerning the character of strongly nontrivial automorphisms of computable linear orderings. Our main result is that for any η-like computable linear ordering, such that has no interval of order type η, and such that the order type of is determined by a -limitwise monotonic maximal block function, there exists computable such that has no nontrivial automorphism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Friedberg enumeration of equivalence structures.Rodney G. Downey, Alexander G. Melnikov & Keng Meng Ng - 2017 - Journal of Mathematical Logic 17 (2):1750008.
    We solve a problem posed by Goncharov and Knight 639–681, 757]). More specifically, we produce an effective Friedberg enumeration of computable equivalence structures, up to isomorphism. We also prove that there exists an effective Friedberg enumeration of all isomorphism types of infinite computable equivalence structures.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Limitwise monotonic functions, sets, and degrees on computable domains.Asher M. Kach & Daniel Turetsky - 2010 - Journal of Symbolic Logic 75 (1):131-154.
    We extend the notion of limitwise monotonic functions to include arbitrary computable domains. We then study which sets and degrees are support increasing limitwise monotonic on various computable domains. As applications, we provide a characterization of the sets S with computable increasing η-representations using support increasing limitwise monotonic sets on ℚ and note relationships between the class of order-computable sets and the class of support increasing limitwise monotonic sets on certain domains.
    Download  
     
    Export citation  
     
    Bookmark   3 citations