Switch to: References

Add citations

You must login to add citations.
  1. Turing degrees of certain isomorphic images of computable relations.Valentina S. Harizanov - 1998 - Annals of Pure and Applied Logic 93 (1-3):103-113.
    A model is computable if its domain is a computable set and its relations and functions are uniformly computable. Let be a computable model and let R be an extra relation on the domain of . That is, R is not named in the language of . We define to be the set of Turing degrees of the images f under all isomorphisms f from to computable models. We investigate conditions on and R which are sufficient and necessary for to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Some effects of Ash–Nerode and other decidability conditions on degree spectra.Valentina S. Harizanov - 1991 - Annals of Pure and Applied Logic 55 (1):51-65.
    With every new recursive relation R on a recursive model , we consider the images of R under all isomorphisms from to other recursive models. We call the set of Turing degrees of these images the degree spectrum of R on , and say that R is intrinsically r.e. if all the images are r.e. C. Ash and A. Nerode introduce an extra decidability condition on , expressed in terms of R. Assuming this decidability condition, they prove that R is (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Computability of fraïssé limits.Barbara F. Csima, Valentina S. Harizanov, Russell Miller & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (1):66 - 93.
    Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Permitting, forcing, and copying of a given recursive relation.C. J. Ash, P. Cholak & J. F. Knight - 1997 - Annals of Pure and Applied Logic 86 (3):219-236.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Generalized weak presentations.Alexandra Shlapentokh - 2002 - Journal of Symbolic Logic 67 (2):787-819.
    Let K be a computable field. Let F be a collection of recursive functions over K, possibly including field operations. We investigate the following question. Given an r.e. degree a, is there an injective map j: K $\longrightarrow \mathbb{N}$ such that j(K) is of degree a and all the functions in F are translated by restrictions of total recursive functions.
    Download  
     
    Export citation  
     
    Bookmark  
  • The possible turing degree of the nonzero member in a two element degree spectrum.Valentina S. Harizanov - 1993 - Annals of Pure and Applied Logic 60 (1):1-30.
    We construct a recursive model , a recursive subset R of its domain, and a Turing degree x 0 satisfying the following condition. The nonrecursive images of R under all isomorphisms from to other recursive models are of Turing degree x and cannot be recursively enumerable.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • $\Pi _{1}^{0}$ Classes and Strong Degree Spectra of Relations.John Chisholm, Jennifer Chubb, Valentina S. Harizanov, Denis R. Hirschfeldt, Carl G. Jockusch, Timothy McNicholl & Sarah Pingrey - 2007 - Journal of Symbolic Logic 72 (3):1003 - 1018.
    We study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable $\Pi _{1}^{0}$ subsets of 2ω and Kolmogorov complexity play a major role in the proof.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations