Switch to: References

Add citations

You must login to add citations.
  1. Zermelo's Analysis of 'General Proposition'.R. Gregory Taylor - 2009 - History and Philosophy of Logic 30 (2):141-155.
    On Zermelo's view, any mathematical theory presupposes a non-empty domain, the elements of which enjoy equal status; furthermore, mathematical axioms must be chosen from among those propositions that reflect the equal status of domain elements. As for which propositions manage to do this, Zermelo's answer is, those that are ?symmetric?, meaning ?invariant under domain permutations?. We argue that symmetry constitutes Zermelo's conceptual analysis of ?general proposition?. Further, although others are commonly associated with the extension of Klein's Erlanger Programme to logic, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege Meets Zermelo: A Perspective on Ineffability and Reflection.Stewart Shapiro - 2008 - Review of Symbolic Logic 1 (2):241-266.
    1. Philosophical background: iteration, ineffability, reflection. There are at least two heuristic motivations for the axioms of standard set theory, by which we mean, as usual, first-order Zermelo–Fraenkel set theory with the axiom of choice (ZFC): the iterative conception and limitation of size (see Boolos, 1989). Each strand provides a rather hospitable environment for the hypothesis that the set-theoretic universe is ineffable, which is our target in this paper, although the motivation is different in each case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Zermelo and set theory.Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
    Ernst Friedrich Ferdinand Zermelo transformed the set theory of Cantor and Dedekind in the first decade of the 20th century by incorporating the Axiom of Choice and providing a simple and workable axiomatization setting out generative set-existence principles. Zermelo thereby tempered the ontological thrust of early set theory, initiated the delineation of what is to be regarded as set-theoretic, drawing out the combinatorial aspects from the logical, and established the basic conceptual framework for the development of modern set theory. Two (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Zermelo and Set Theory. [REVIEW]Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
    Ernst Friedrich Ferdinand Zermelo (1871–1953) transformed the set theory of Cantor and Dedekind in the first decade of the 20th century by incorporating the Axiom of Choice and providing a simple and workable axiomatization setting out generative set-existence principles. Zermelo thereby tempered the ontological thrust of early set theory, initiated the delineation of what is to be regarded as set-theoretic, drawing out the combinatorial aspects from the logical, and established the basic conceptual framework for the development of modern set theory. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Zermelo: Boundary numbers and domains of sets continued.Heinz-Dieter Ebbinghaus - 2006 - History and Philosophy of Logic 27 (4):285-306.
    Towards the end of his 1930 paper on boundary numbers and domains of sets Zermelo briefly discusses the questions of consistency and of the existence of an unbounded sequence of strongly inaccessible cardinals, deferring a detailed discussion to a later paper which never appeared. In a report to the Emergency Community of German Science from December 1930 about investigations in progress he mentions that some of the intended extensions of these topics had been worked out and were nearly ready for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations