Switch to: References

Add citations

You must login to add citations.
  1. Aggregating infinitely many probability measures.Frederik Herzberg - 2015 - Theory and Decision 78 (2):319-337.
    The problem of how to rationally aggregate probability measures occurs in particular when a group of agents, each holding probabilistic beliefs, needs to rationalise a collective decision on the basis of a single ‘aggregate belief system’ and when an individual whose belief system is compatible with several probability measures wishes to evaluate her options on the basis of a single aggregate prior via classical expected utility theory. We investigate this problem by first recalling some negative results from preference and judgment (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Graded Bayesian Coherence Notion.Frederik Herzberg - 2014 - Erkenntnis 79 (4):843-869.
    Coherence is a key concept in many accounts of epistemic justification within ‘traditional’ analytic epistemology. Within formal epistemology, too, there is a substantial body of research on coherence measures. However, there has been surprisingly little interaction between the two bodies of literature. The reason is that the existing formal literature on coherence measure operates with a notion of belief system that is very different from—what we argue is—a natural Bayesian formalisation of the concept of belief system from traditional epistemology. Therefore, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Consistency of Probabilistic Regresses: Some Implications for Epistemological Infinitism. [REVIEW]Frederik Herzberg - 2013 - Erkenntnis 78 (2):371-382.
    This note employs the recently established consistency theorem for infinite regresses of probabilistic justification (Herzberg in Stud Log 94(3):331–345, 2010) to address some of the better-known objections to epistemological infinitism. In addition, another proof for that consistency theorem is given; the new derivation no longer employs nonstandard analysis, but utilises the Daniell–Kolmogorov theorem.
    Download  
     
    Export citation  
     
    Bookmark   5 citations