Switch to: References

Add citations

You must login to add citations.
  1. Epimorphisms, Definability and Cardinalities.T. Moraschini, J. G. Raftery & J. J. Wannenburg - 2020 - Studia Logica 108 (2):255-275.
    We characterize, in syntactic terms, the ranges of epimorphisms in an arbitrary class of similar first-order structures. This allows us to strengthen a result of Bacsich, as follows: in any prevariety having at most \ non-logical symbols and an axiomatization requiring at most \ variables, if the epimorphisms into structures with at most \ elements are surjective, then so are all of the epimorphisms. Using these facts, we formulate and prove manageable ‘bridge theorems’, matching the surjectivity of all epimorphisms in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Behavioral Algebraization of Logics.Carlos Caleiro, Ricardo Gonçalves & Manuel Martins - 2009 - Studia Logica 91 (1):63-111.
    We introduce and study a new approach to the theory of abstract algebraic logic (AAL) that explores the use of many-sorted behavioral logic in the role traditionally played by unsorted equational logic. Our aim is to extend the range of applicability of AAL toward providing a meaningful algebraic counterpart also to logics with a many-sorted language, and possibly including non-truth-functional connectives. The proposed behavioral approach covers logics which are not algebraizable according to the standard approach, while also bringing a new (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: More on Protoalgebraicity.George Voutsadakis - 2006 - Notre Dame Journal of Formal Logic 47 (4):487-514.
    Protoalgebraic logics are characterized by the monotonicity of the Leibniz operator on their theory lattices and are at the lower end of the Leibniz hierarchy of abstract algebraic logic. They have been shown to be the most primitive among those logics with a strong enough algebraic character to be amenable to algebraic study techniques. Protoalgebraic π-institutions were introduced recently as an analog of protoalgebraic sentential logics with the goal of extending the Leibniz hierarchy from the sentential framework to the π-institution (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • 2003 Annual Meeting of the Association for Symbolic Logic.Andreas Blass - 2004 - Bulletin of Symbolic Logic 10 (1):120-145.
    Download  
     
    Export citation  
     
    Bookmark  
  • Update to “A Survey of Abstract Algebraic Logic”.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2009 - Studia Logica 91 (1):125-130.
    A definition and some inaccurate cross-references in the paper A Survey of Abstract Algebraic Logic, which might confuse some readers, are clarified and corrected; a short discussion of the main one is included. We also update a dozen of bibliographic references.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (3 other versions)Categorical abstract algebraic logic: The criterion for deductive equivalence: The criterion for deductive equivalence.George Voutsadakis - 2003 - Mathematical Logic Quarterly 49 (4):347.
    Equivalent deductive systems were introduced in [4] with the goal of treating 1‐deductive systems and algebraic 2‐deductive systems in a uniform way. Results of [3], appropriately translated and strengthened, show that two deductive systems over the same language type are equivalent if and only if their lattices of theories are isomorphic via an isomorphism that commutes with substitutions. Deductive equivalence of π‐institutions [14, 15] generalizes the notion of equivalence of deductive systems. In [15, Theorem 10.26] this criterion for the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weakly algebraizable logics.Janusz Czelakowski & Ramon Jansana - 2000 - Journal of Symbolic Logic 65 (2):641-668.
    In the paper we study the class of weakly algebraizable logics, characterized by the monotonicity and injectivity of the Leibniz operator on the theories of the logic. This class forms a new level in the non-linear hierarchy of protoalgebraic logics.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Categorical abstract algebraic logic: Gentzen π ‐institutions and the deduction‐detachment property.George Voutsadakis - 2005 - Mathematical Logic Quarterly 51 (6):570-578.
    Given a π -institution I , a hierarchy of π -institutions I is constructed, for n ≥ 1. We call I the n-th order counterpart of I . The second-order counterpart of a deductive π -institution is a Gentzen π -institution, i.e. a π -institution associated with a structural Gentzen system in a canonical way. So, by analogy, the second order counterpart I of I is also called the “Gentzenization” of I . In the main result of the paper, it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstract Valuation Semantics.Carlos Caleiro & Ricardo Gonçalves - 2013 - Studia Logica 101 (4):677-712.
    We define and study abstract valuation semantics for logics, an algebraically well-behaved version of valuation semantics. Then, in the context of the behavioral approach to the algebraization of logics, we show, by means of meaningful bridge theorems and application examples, that abstract valuations are suited to play a role similar to the one played by logical matrices in the traditional approach to algebraization.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Poset of All Logics I: Interpretations and Lattice Structure.R. Jansana & T. Moraschini - 2021 - Journal of Symbolic Logic 86 (3):935-964.
    A notion of interpretation between arbitrary logics is introduced, and the poset$\mathsf {Log}$of all logics ordered under interpretability is studied. It is shown that in$\mathsf {Log}$infima of arbitrarily large sets exist, but binary suprema in general do not. On the other hand, the existence of suprema of sets of equivalential logics is established. The relations between$\mathsf {Log}$and the lattice of interpretability types of varieties are investigated.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Poset of All Logics III: Finitely Presentable Logics.Ramon Jansana & Tommaso Moraschini - 2020 - Studia Logica 109 (3):539-580.
    A logic in a finite language is said to be finitely presentable if it is axiomatized by finitely many finite rules. It is proved that binary non-indexed products of logics that are both finitely presentable and finitely equivalential are essentially finitely presentable. This result does not extend to binary non-indexed products of arbitrary finitely presentable logics, as shown by a counterexample. Finitely presentable logics are then exploited to introduce finitely presentable Leibniz classes, and to draw a parallel between the Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A study of truth predicates in matrix semantics.Tommaso Moraschini - 2018 - Review of Symbolic Logic 11 (4):780-804.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Beth Property in Algebraic Logic.W. J. Blok & Eva Hoogland - 2006 - Studia Logica 83 (1-3):49-90.
    The present paper is a study in abstract algebraic logic. We investigate the correspondence between the metalogical Beth property and the algebraic property of surjectivity of epimorphisms. It will be shown that this correspondence holds for the large class of equivalential logics. We apply our characterization theorem to relevance logics and many-valued logics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Contextual Deduction Theorems.J. G. Raftery - 2011 - Studia Logica 99 (1-3):279-319.
    Logics that do not have a deduction-detachment theorem (briefly, a DDT) may still possess a contextual DDT —a syntactic notion introduced here for arbitrary deductive systems, along with a local variant. Substructural logics without sentential constants are natural witnesses to these phenomena. In the presence of a contextual DDT, we can still upgrade many weak completeness results to strong ones, e.g., the finite model property implies the strong finite model property. It turns out that a finitary system has a contextual (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Categorical Abstract Algebraic Logic: Behavioral π-Institutions.George Voutsadakis - 2014 - Studia Logica 102 (3):617-646.
    Recently, Caleiro, Gon¸calves and Martins introduced the notion of behaviorally algebraizable logic. The main idea behind their work is to replace, in the traditional theory of algebraizability of Blok and Pigozzi, unsorted equational logic with multi-sorted behavioral logic. The new notion accommodates logics over many-sorted languages and with non-truth-functional connectives. Moreover, it treats logics that are not algebraizable in the traditional sense while, at the same time, shedding new light to the equivalent algebraic semantics of logics that are algebraizable according (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Closure Properties of the Class of Full G-models of a Deductive System.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2006 - Studia Logica 83 (1-3):215-278.
    In this paper we consider the structure of the class FGModS of full generalized models of a deductive system S from a universal-algebraic point of view, and the structure of the set of all the full generalized models of S on a fixed algebra A from the lattice-theoretical point of view; this set is represented by the lattice FACSs A of all algebraic closed-set systems C on A such that (A, C) ε FGModS. We relate some properties of these structures (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fregean logics.J. Czelakowski & D. Pigozzi - 2004 - Annals of Pure and Applied Logic 127 (1-3):17-76.
    According to Frege's principle the denotation of a sentence coincides with its truth-value. The principle is investigated within the context of abstract algebraic logic, and it is shown that taken together with the deduction theorem it characterizes intuitionistic logic in a certain strong sense.A 2nd-order matrix is an algebra together with an algebraic closed set system on its universe. A deductive system is a second-order matrix over the formula algebra of some fixed but arbitrary language. A second-order matrix A is (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Equivalential and algebraizable logics.Burghard Herrmann - 1996 - Studia Logica 57 (2-3):419 - 436.
    The notion of an algebraizable logic in the sense of Blok and Pigozzi [3] is generalized to that of a possibly infinitely algebraizable, for short, p.i.-algebraizable logic by admitting infinite sets of equivalence formulas and defining equations. An example of the new class is given. Many ideas of this paper have been present in [3] and [4]. By a consequent matrix semantics approach the theory of algebraizable and p.i.-algebraizable logics is developed in a different way. It is related to the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Compatibility operators in abstract algebraic logic.Hugo Albuquerque, Josep Maria Font & Ramon Jansana - 2016 - Journal of Symbolic Logic 81 (2):417-462.
    This paper presents a unified framework that explains and extends the already successful applications of the Leibniz operator, the Suszko operator, and the Tarski operator in recent developments in abstract algebraic logic. To this end, we refine Czelakowski’s notion of an S-compatibility operator, and introduce the notion of coherent family of S-compatibility operators, for a sentential logic S. The notion of coherence is a restricted property of commutativity with inverse images by surjective homomorphisms, which is satisfied by both the Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (3 other versions)Categorical abstract algebraic logic: Equivalent institutions.George Voutsadakis - 2003 - Studia Logica 74 (1-2):275 - 311.
    A category theoretic generalization of the theory of algebraizable deductive systems of Blok and Pigozzi is developed. The theory of institutions of Goguen and Burstall is used to provide the underlying framework which replaces and generalizes the universal algebraic framework based on the notion of a deductive system. The notion of a term -institution is introduced first. Then the notions of quasi-equivalence, strong quasi-equivalence and deductive equivalence are defined for -institutions. Necessary and sufficient conditions are given for the quasi-equivalence and (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Correspondences between Gentzen and Hilbert Systems.J. G. Raftery - 2006 - Journal of Symbolic Logic 71 (3):903 - 957.
    Most Gentzen systems arising in logic contain few axiom schemata and many rule schemata. Hilbert systems, on the other hand, usually contain few proper inference rules and possibly many axioms. Because of this, the two notions tend to serve different purposes. It is common for a logic to be specified in the first instance by means of a Gentzen calculus, whereupon a Hilbert-style presentation ‘for’ the logic may be sought—or vice versa. Where this has occurred, the word ‘for’ has taken (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Categorical abstract algebraic logic: The categorical Suszko operator.George Voutsadakis - 2007 - Mathematical Logic Quarterly 53 (6):616-635.
    Czelakowski introduced the Suszko operator as a basis for the development of a hierarchy of non-protoalgebraic logics, paralleling the well-known abstract algebraic hierarchy of protoalgebraic logics based on the Leibniz operator of Blok and Pigozzi. The scope of the theory of the Leibniz operator was recently extended to cover the case of, the so-called, protoalgebraic π-institutions. In the present work, following the lead of Czelakowski, an attempt is made at lifting parts of the theory of the Suszko operator to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categorical abstract algebraic logic metalogical properties.George Voutsadakis - 2003 - Studia Logica 74 (3):369 - 398.
    Metalogical properties that have traditionally been studied in the deductive system context (see, e.g., [21]) and transferred later to the institution context [33], are here formulated in the -institution context. Preservation under deductive equivalence of -institutions is investigated. If a property is known to hold in all algebraic -institutions and is preserved under deductive equivalence, then it follows that it holds in all algebraizable -institutions in the sense of [36].
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Foreword.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2000 - Studia Logica 65 (1):1-9.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Categorical Abstract Algebraic Logic: Truth-Equational $pi$-Institutions.George Voutsadakis - 2015 - Notre Dame Journal of Formal Logic 56 (2):351-378.
    Finitely algebraizable deductive systems were introduced by Blok and Pigozzi to capture the essential properties of those deductive systems that are very tightly connected to quasivarieties of universal algebras. They include the equivalential logics of Czelakowski. Based on Blok and Pigozzi’s work, Herrmann defined algebraizable deductive systems. These are the equivalential deductive systems that are also truth-equational, in the sense that the truth predicate of the class of their reduced matrix models is explicitly definable by some set of unary equations. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (3 other versions)Categorical abstract algebraic logic: The criterion for deductive equivalence.George Voutsadakis - 2003 - Mathematical Logic Quarterly 49 (4):347-352.
    Equivalent deductive systems were introduced in [4] with the goal of treating 1-deductive systems and algebraic 2-deductive systems in a uniform way. Results of [3], appropriately translated and strengthened, show that two deductive systems over the same language type are equivalent if and only if their lattices of theories are isomorphic via an isomorphism that commutes with substitutions. Deductive equivalence of π-institutions [14, 15] generalizes the notion of equivalence of deductive systems. In [15, Theorem 10.26] this criterion for the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations