Switch to: References

Add citations

You must login to add citations.
  1. On the Reality of the Quantum State Once Again: A No-Go Theorem for ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-Ontic Models. [REVIEW]Christine A. Aidala, Andrea Oldofredi & Gabriele Carcassi - 2024 - Foundations of Physics 54 (1):1-15.
    In this paper we show that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontic models, as defined by Harrigan and Spekkens (HS), cannot reproduce quantum theory. Instead of focusing on probability, we use information theoretic considerations to show that all pure states of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontic models must be orthogonal to each other, in clear violation of quantum mechanics. Given that (i) Pusey, Barrett and Rudolph (PBR) previously showed that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Philosophy of Nature of the Natural Realism. The Operator Algebra from Physics to Logic.Gianfranco Basti - 2022 - Philosophies 7 (6):121.
    This contribution is an essay of formal philosophy—and more specifically of formal ontology and formal epistemology—applied, respectively, to the philosophy of nature and to the philosophy of sciences, interpreted the former as the ontology and the latter as the epistemology of the modern mathematical, natural, and artificial sciences, the theoretical computer science included. I present the formal philosophy in the framework of the category theory (CT) as an axiomatic metalanguage—in many senses “wider” than set theory (ST)—of mathematics and logic, both (...)
    Download  
     
    Export citation  
     
    Bookmark