Switch to: References

Add citations

You must login to add citations.
  1. Disambiguating Algorithmic Bias: From Neutrality to Justice.Elizabeth Edenberg & Alexandra Wood - 2023 - In Francesca Rossi, Sanmay Das, Jenny Davis, Kay Firth-Butterfield & Alex John (eds.), AIES '23: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery. pp. 691-704.
    As algorithms have become ubiquitous in consequential domains, societal concerns about the potential for discriminatory outcomes have prompted urgent calls to address algorithmic bias. In response, a rich literature across computer science, law, and ethics is rapidly proliferating to advance approaches to designing fair algorithms. Yet computer scientists, legal scholars, and ethicists are often not speaking the same language when using the term ‘bias.’ Debates concerning whether society can or should tackle the problem of algorithmic bias are hampered by conflations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ontology, neural networks, and the social sciences.David Strohmaier - 2020 - Synthese 199 (1-2):4775-4794.
    The ontology of social objects and facts remains a field of continued controversy. This situation complicates the life of social scientists who seek to make predictive models of social phenomena. For the purposes of modelling a social phenomenon, we would like to avoid having to make any controversial ontological commitments. The overwhelming majority of models in the social sciences, including statistical models, are built upon ontological assumptions that can be questioned. Recently, however, artificial neural networks have made their way into (...)
    Download  
     
    Export citation  
     
    Bookmark